Recent Development of Chemical Synthesis of RNA

  • Mitsuo Sekine


Recent studies on the chemical synthesis of RNA and related derivatives are reviewed. In particular, a variety of new 2′-hydroxyl protecting groups that are developed during the past decade are described and compared with the conventional ones from the organochemical point of view. Great improvements in the coupling efficiency and suppression of side reactions during RNA synthesis cycles are described in great detail. The methods and associated problems for constructing the key synthetic intermediates, i.e., 2′-O-protected ribonucleoside 3′-phosphoramidite building blocks, are also discussed.


Chemical synthesis of RNA Automated synthesis 2′-hydroxyl protecting group Modified RNA Solid-phase synthesis Phosphoramidite approach siRNA Antisense RNA Gene therapy 


  1. 1.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  2. 2.
    Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefPubMedGoogle Scholar
  3. 3.
    Manoharan M (2002) Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev 12:103–128CrossRefPubMedGoogle Scholar
  4. 4.
    Amarzguioui M, Lundberg P, Cantin E et al (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1:508–517CrossRefPubMedGoogle Scholar
  5. 5.
    Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Behlke MA (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18:305–319CrossRefPubMedGoogle Scholar
  7. 7.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  8. 8.
    Esau CC, Monia BP (2007) Therapeutic potential for microRNAs. Adv Drug Deliv Rev 59:101–114CrossRefPubMedGoogle Scholar
  9. 9.
    Chua JH, Armugam A, Jeyaseelan K (2009) MicroRNAs: biogenesis, function and applications. Curr Opin Mol Ther 11:189–199PubMedGoogle Scholar
  10. 10.
    Liao W, Dong J, Peh HY, Tan LH, Lim KS, Li L, Wong WF (2017) Oligonucleotide therapy for obstructive and restrictive respiratory diseases. Molecules 22:139CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Siolas D, Lerner C, Burchard J et al (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231CrossRefPubMedGoogle Scholar
  12. 12.
    Ge Q, Dallas A, Ilves H et al (2010) Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA 16:118–130CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefPubMedGoogle Scholar
  14. 14.
    Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74:199–217CrossRefPubMedGoogle Scholar
  15. 15.
    Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929CrossRefPubMedGoogle Scholar
  16. 16.
    Vogel J (2009) A rough guide to the non-coding RNA world of salmonella. Mol Microbiol 71:1–11CrossRefPubMedGoogle Scholar
  17. 17.
    Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823CrossRefPubMedGoogle Scholar
  18. 18.
    Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855CrossRefPubMedGoogle Scholar
  19. 19.
    Beaucage SL (2008) Solid-phase synthesis of siRNA oligonucleotides. Curr Opin Drug Discov Dev 11:203–216Google Scholar
  20. 20.
    Lönnberg H (2009) Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconjug Chem 20:1065–1094CrossRefPubMedGoogle Scholar
  21. 21.
    Reese CB (2002) The chemical synthesis of oligo- and poly-nucleotides: a personal commentary. Tetrahedron 58:8893–8920CrossRefGoogle Scholar
  22. 22.
    Reese CB (2005) Oligo- and poly-nucleotides: 50 years of chemical synthesis. Org Biomol Chem 3:3851–3868CrossRefPubMedGoogle Scholar
  23. 23.
    Beaucage SL, Reese C (2009) Recent advances in the chemical synthesis of RNA. In: Beaucage SL, Bergstrom DE, Glick GD et al (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 2.16.1–2.2.31CrossRefGoogle Scholar
  24. 24.
    Beaucage SL, Caruthers MH (2000) In: Beaucage SL, Bergstrom DE, Glick GD et al (eds) Current protocols in nucleic acid chemistry, vol I. Wiley, New York, pp 3.3.1–3.3.20Google Scholar
  25. 25.
    Beaucage SL, Iyer RP (1993) The synthesis of modified oligonucleotides by the phosphoramidite approach and their applications. Tetrahedron 49:6123–6194CrossRefGoogle Scholar
  26. 26.
    Beaucage SL, Iyer RP (1992) Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48:2223–2311CrossRefGoogle Scholar
  27. 27.
    Bornscheuer U (2010) The first artificial cell-A revolutionary step in synthetic biology? Angew Chem Int Ed 49:5228–5230CrossRefGoogle Scholar
  28. 28.
    Gibson DG (2008) Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science 319:1215–1220CrossRefPubMedGoogle Scholar
  29. 29.
    Smith M, Rammer DH, Goldberg IH et al (1962) Polynucleotides. XIV. Specific synthesis of the C3′-C5′ internucleotide linkage. Synthesis of uridylyl(3′→5′)-uridine and uridylyl-(3′→5′)-adenosine. J Am Chem Soc 84:430–440CrossRefGoogle Scholar
  30. 30.
    Schulhof JC, Molko DS, Teoule R (1987) The final deprotection step in oligonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using labile base-protecting groups. Nucleic Acids Res 15:397–416CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sinha ND, Davis P, Usman N et al (1993) Labile exocyclic amino protection of nucleosides in DNA, RNA and oligonucleotide analog synthesis facilitating N-deacylation, minimizing depruination and chain degradation. Biochimie 75:13–23CrossRefPubMedGoogle Scholar
  32. 32.
    Welz R, Müller S (2002) 5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis. Tetrahedron Lett 43:795–797CrossRefGoogle Scholar
  33. 33.
    Sproat B, Colonna F, Mullah B et al (1995) An efficient method for the isolation and purification of ligoribonucleotides. Nucleosides Nucleotides 14:255–273CrossRefGoogle Scholar
  34. 34.
    Vargeese C, Carter J, Yegge J et al (1998) Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res 26:1046–1050CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Leuck M, Wolter A, Stumpe A (2008) U.S. Pat. Appl. Publ., US 20080064867 A1 20080313. Activator 42 is commercially available from Proligo Co. Ltd. For its recent use see: Utagawa E, Ohkubo A, Sekine M et al (2007) Synthesis of branched oligonucleotides with three different sequences using an oxidatively removable tritylthio group. J Org Chem 72:8259–8266Google Scholar
  36. 36.
    Hayakawa Y, Kataoka M, Noyori R (1996) Benzimidazolium triflate as an efficient promoter for nucleotide synthesis via the phosphoramidite method. J Org Chem 61:7996–7997CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hakimelahi H, Proba ZA, Ogilvie KK (1982) New catalyst and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can J Chem 60:1106–1113CrossRefGoogle Scholar
  38. 38.
    Ogilvie KK, Damha MJ, Usman N et al (1987) Developments in the chemical synthesis of naturally occurring DNA and RNA sequences with normal and unusual linkages. Pure Appl Chem 59:325–330CrossRefGoogle Scholar
  39. 39.
    Usman N, Ogilvie KK, Jiang MY et al (1987) The automated chemical synthesis of long oligoribuncleotides using 2′-O-silylated ribonucleoside 3′-O-phosphoramidites on a controlled-pore glass support: synthesis of a 43-nucleotide sequence similar to the 3′-half molecule of an Escherichia coli formylmethionine tRNA. J Am Chem Soc 109:7845–7854CrossRefGoogle Scholar
  40. 40.
    Ogilvie KK, Usman N, Nicoghosian K (1988) Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity. Proc Natl Acad Sci U S A 85:5764–5768CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Corey EJ, Venkateswarlu A (1972) Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J Am Chem Soc 94:6190–6191CrossRefGoogle Scholar
  42. 42.
    Nagai H, Fujiwara T, Fujii M et al (1989) Reinvestigation of deoxyribonucleoside phosphorothioites–synthesis and properties of deoxyribonucleoside-3′-dimethyl phosphites. Nucleic Acids Res 17:8581–8593CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tanimura H, Maeda M, Fukazawa T et al (1989) Chemical synthesis of the 24 RNA fragments corresponding to hop stunt viroid. Nucleic Acids Res 17:8135–8147CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tanimura H, Fukazawa T, Sekine M et al (1988) The practical synthesisof RNA fragments in the solid phase approach. Tetrahedron Lett 29:577–578CrossRefGoogle Scholar
  45. 45.
    Iwai S, Ohtsuka E (1988) Synthesis of oligoribonucleotifes by the phosphoramidite approach using 5′-levullinyl and 2′-tetrahydrofuranyl protection. Tetrahedron Lett 29:5383–5386CrossRefGoogle Scholar
  46. 46.
    Iwai S, Ohtsuka E (1988) 5′-Levulinyl and 2′-tetrahydrofurany protection for the synthesis of oligoribonucleotides by the phosphoramidite approach. Nucleic Acids Res 16:9443–9456CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Van der Marel GA, Wille G, van Boom JH (1982) Solid-phase synthesis of the RNA fragment: rAAGAAGAAGAAGA. Recueil Trav Chim Pays-Bas 101:241–246CrossRefGoogle Scholar
  48. 48.
    Lloyd W, Reese C, Song Q et al (2000) Some observations relating to the use of 1-aryl-4-alkoxypiperidin-4-yl groups for the protection of the 2′-hydroxy functions in the chemical synthesis of oligoribonucleotides. J Chem Soc Perkin Trans I:165–176CrossRefGoogle Scholar
  49. 49.
    Reese C, Thompson EA (1988) A new synthesis of 1-arylpiperidin-4-ols. J Chem Soc Perkin Trans I:2881–2885CrossRefGoogle Scholar
  50. 50.
    Capaldi DC, Reese CB (1994) Use of the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp) and related protecting groups in oligoribonucleotide synthesis: stability of internucleotide linkages to aqueous acid. Nucleic Acids Res 22:2209–2216CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Scaringe SA, Wincott FE, Caruthers MH (1998) Novel RNA synthesis method using 5′-O-silyl-2′-O-orthoester protecting groups. J Am Chem Soc 120:11820–11821CrossRefGoogle Scholar
  52. 52.
    Dahl BJ, Bjergarde K, Henriksen L et al (1990) A highly reactive, odorless substitute for thiophenol triethylamine as a deprotection reagent in the synthesis of oligonucleotides and their analogs. Acta Chem Scand 44:639–641CrossRefGoogle Scholar
  53. 53.
    Schwartz WE, Breaker RR, Asteriadis GT et al (1992) Rapid synthesis of oligoribonucleotides using 2′-O-(ortho-nitrobenzyloxymethyl)-protected monomers. Bioorg Med Chem Lett 2:1019–1024CrossRefGoogle Scholar
  54. 54.
    Miller TJ, Schwartz ME, Gough GR (2000) 2′-Hydroxyl-protecting groups that are either photochemically labile or sensitive to fluoride ions. In: Beaucage SL, Bergstrom DE, Glick GD et al (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 2.5.1–2.5.36Google Scholar
  55. 55.
    Miller TJ, Schwartz ME, Gough GR (2000) Synthesis of oligoribonucleotides using the 2-nitrobenzyloxymethyl group for 2′-hydroxyl protection. In: Beaucage SL, Bergstrom DE, Glick GD et al (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 3.7.1–3.7.8Google Scholar
  56. 56.
    DeBear JS, Hayes JA, Koleck MP et al (1987) A universal glass support for oligonucleotide synthesis. Nucleoside Nucleotides 6:821–830CrossRefGoogle Scholar
  57. 57.
    Pitsch S (1997) An efficient synthesis of enantiomeric ribonucleic acids from D-glucose. Helv Chim Acta 80:2286–2314CrossRefGoogle Scholar
  58. 58.
    Pitsch S, Weiss PA, Wu X et al (1999) Fast and reliable automated synthesis of RNA and partially 2′-O-protected precursors (‘caged RNA’) based on two novel, orthogonal 2′-O-protecting groups. Helv Chim Acta 82:1753–1761CrossRefGoogle Scholar
  59. 59.
    Wincott FE, Usman N (1994) 2′-(Trimethylsilyl)ethoxymethyl protection of the 2′-hydroxyl group in oligoribonucleotide synthesis. Tetrahedron Lett 35:6827–6830CrossRefGoogle Scholar
  60. 60.
    Pitsch S, Weiss PA, Jenny L et al (2001) Reliable chemical synthesis of oligoribonucleotides (RNA) with 2′-O-[(triisopropylsilyl)oxy]methyl(2′-O-tom)-protected phosphoramidites. Helv Chim Acta 84:3773–3794CrossRefGoogle Scholar
  61. 60.
    Pitsch S, Weiss PA (2001) Chemical synthesis of RNA sequences with 2′-O-[(triisopropylsilyl)oxy]methyl-protected ribonucleoside phosphoramidites. In: Beaucage SL, Bergstrom DE, Glick GD et al (eds) Current protocols in nucleic acid chemistry. Wiley, New York, pp 3.8.1–3.8.15CrossRefGoogle Scholar
  62. 61.
    Wu X, Pitsch S (1999) Functionalization of the sugar moiety of oligoribonucleotides on solid support. Bioconjug Chem 10:921–924CrossRefPubMedGoogle Scholar
  63. 62.
    Wu X, Pitsch S (1998) Synthesis and pairring properties of oligoribonucleotide analogues containing a metal-binding site attached to β-D-allofuranosyl cytosine. Nucleic Acids Res 26:4315–4323CrossRefPubMedPubMedCentralGoogle Scholar
  64. 63.
    Wu X, Pitsch S (2000) Synthesis of 5′-C- and 2′-O-(bromoalkyl)-substituted ribonucleoside phosphoramidites for the post-synthetic functionalization of oligonucleotides on solid support. Helv Chim Acta 83:1127–1144CrossRefGoogle Scholar
  65. 64.
    Stutz A, Höbartner C, Pitsch S (2000) Novel fluoride-labile mucleobase-protecting groups for the synthesis of 3′(2′)-O-aminoacylated RNA sequences. Helv Chim Acta 83:2477–2483CrossRefGoogle Scholar
  66. 65.
    Wenter P, Pitsch S (2003) Synthesis of selectively 15N-labeled 2′-O-[[triisopropylsilyl]oxy]methyl] (=tom)-protected ribonucleoside phosphoramidites and their incorporation into a bistable 32 mer RNA sequence. 86:3955–3974Google Scholar
  67. 66.
    Porcher S, Pitsch S (2005) Synthesis of 2′-O-[(triisopropylsilyl)oxy]methyl (=tom)-protected ribonucleoside phosphoramidites containing various nucleobase analogues. Helv Chim Acta 88:2683–2703CrossRefGoogle Scholar
  68. 67.
    Umemoto T, Wada T (2004) Oligoribonucleotide synthesis by the use of 1-(2-cyanoethoxy)ethyl (CEE) as a 2′-hydroxy protecting group. Tetrahedron Lett 45:9529–9531CrossRefGoogle Scholar
  69. 68.
    Matysiak S, Fitznar HP, Schnell R et al (1998) Nucleosides – part LXIII – acetals as new 2′-O-protecting functions for the synthesis of oligoribonucleotides: synthesis of uridine building blocks and evaluation of their relative acid stability. Helv Chim Acta 81:1545–1566CrossRefGoogle Scholar
  70. 69.
    Ohgi T, Masutomi Y, Ishiyama K (2005) A new RNA synthetic Method with a 2′-O-(2-cyanoethoxyemthyl) protecting group. Org Lett 7:3477–3480CrossRefPubMedGoogle Scholar
  71. 70.
    Zhou C, Honcharenko D, Chattopadhyaya J (2007) 2-(4-Tolylsulfonyl)ethoxymethyl (TEM)–a new 2′-OH protecting group for solid-supported RNA synthesis. Org Biomol Chem 5:333–343CrossRefPubMedGoogle Scholar
  72. 71.
    Zhou C, Pathmasire W, Honchararenko D et al (2007) High-quality oligo-RNA synthesis using the new 2′-O-TEM protecting group by selectively quenching the addition of p-tolyl vinyl sulphone to exocyclic amino functions. Can J Chem 85:293–301CrossRefGoogle Scholar
  73. 72.
    Semenyuk A, Foldesi A, Johansson T et al (2006) Synthesis of RNA using 2′-O-DTM protection. J Am Chem Soc 128:12356–12357CrossRefPubMedGoogle Scholar
  74. 73.
    Sekine M, Nakanishi T (1991) Oligoribonucleotide synthesis by use of [[2-(methylthio)phenyl]thio]methyl (MPTM) group as the 2′-hydroxyl protecting groups. Chem Lett:121–124Google Scholar
  75. 74.
    Sekine M, Nakanishi T (1989) [[2-(Methylthil)phenyl]thio]methyl (MPTM): a new protecting group of hydroxyl groups caable of conversion to a methyl group. J Org Chem 54:5998–6000CrossRefGoogle Scholar
  76. 75.
    Sekine M, Hata T (1999) Chemical synthesis of oligonucleotides by use of phenylthio group. Curr Org Chem 3:25–66Google Scholar
  77. 76.
    Cieslak J, Kauffman JS, Kolodziejski MJ et al (2007) Assessment of 4-nitrogenated benzyloxymethyl groups for 2′-hydroxyl protection in solid-phase RNA synthesis. Org Lett 9:671–674CrossRefPubMedGoogle Scholar
  78. 77.
    Lackey JG, Mitra D, Somoza MM et al (2009) Acetal levulinyl ester (ALE) groups for 2′-hydroxyl protection of ribonucleosides in the synthesis of oligoribonucleotides on glass and microarrays. J Am Chem Soc 131:8496–8502CrossRefPubMedPubMedCentralGoogle Scholar
  79. 78.
    Gough GR, Miller TJ, Mantick NA (1996) p-Nitrobenzyloxymethyl: a new fluoride-removable protecting group for ribboneoside 2′-hydroxyls. Tetrahedron Lett 37:981–982CrossRefGoogle Scholar
  80. 79.
    Pon RT, Yu S (1997) Hydroquinone-O,O′-diacetic acid (‘Q-linker’) as a replacement for succinyl and oxalyl linker arms in solid phase oligonucleotide synthesis. Nucleic Acids Res 25:3629–3635CrossRefPubMedPubMedCentralGoogle Scholar
  81. 80.
    Saneyoshi H, Seio K, Sekine M (2005) A general method for the synthesis of 2′-O-cyanoethylated oligoribonucleotides having promising hybridization affinity for DNA and RNA and enhanced nuclease resistance. J Org Chem 70:10453–10460CrossRefPubMedGoogle Scholar
  82. 81.
    Saneyoshi H, Ando K, Seio K et al (2007) Chemical synthesis of RNA via 2′-O-cyanoethylated intermediates. Tetrahedron 63:11195–11203CrossRefGoogle Scholar
  83. 82.
    Velikyan I, Acharya S, Trifonova A et al (2001) The pK(a)’s of 2′-hydroxyl group in nucleosides and nucleotides. J Am Chem Soc 123:2893–2894CrossRefPubMedGoogle Scholar
  84. 83.
    Markiewicz W T, Tos-Marciniak A et al WO2014148928 A1Google Scholar
  85. 84.
    Kataoka M. (2014) JP WO2014/017615 AGoogle Scholar
  86. 85.
    Matsuno Y, Takao S, Kim S, Chiba K (2016) Synthetic method for oligonucleotide block by using alkyl-chain-soluble support. Org Lett 18:800–803CrossRefPubMedGoogle Scholar
  87. 86.
    Aoki E, Suzuki H, Itoh A. (2013) WO/2013/027843Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mitsuo Sekine
    • 1
  1. 1.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations