Nanotechnology and Edible Films for Food Packaging Applications

  • Paula J. P. Espitia
  • Caio G. Otoni


Nanotechnology has been exploited in the last decade as an innovative approach that allows obtaining nanoscaled organic and inorganic compounds featuring unique properties due to their size. When nanomaterials are incorporated in polymers intended to act as film-forming matrices for food packaging, they are known to improve their physical-mechanical performances by acting as fillers. Other properties (e.g., biological activity against foodborne pathogens and/or spoilage microorganisms) may also be developed and used as key features in biopolymer-based materials for food preservation. Concerning food-grade biopolymers, edible films may be produced and denote alternative packaging materials that are promising due to the possibility of taking advantage of film-forming polysaccharides and polypeptides that would be wasted to produce edible packaging featuring biodegradability and nutritional and sensory values. These edible materials may also have boosted active roles (antimicrobial and antioxidant, in particular) when specific nanoscaled additives are used. Therefore, this chapter reviews the most recent advances on the development of edible films incorporated with nanoparticles or nanoencapsulated compounds to be used as packaging materials for food preservation purposes. Moreover, physical-mechanical characterization techniques (such as mechanical resistance, barrier properties, and microstructure) and antimicrobial properties are addressed. Finally, future trends are discussed considering potential effects on consumers. This contribution presents the state of the art on edible nanocomposite films for food packaging applications.


Active packaging Nanocomposite Antimicrobial activity Antioxidant activity Nanoemulsion Nanocapsule Nanocellulose Nanoclay Nanostarch Nanochitosan Peptide 


  1. Acevedo-Fani A, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2015) Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocoll 47(Supplement C):168–177CrossRefGoogle Scholar
  2. Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU (2017) Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49(1):1–11CrossRefGoogle Scholar
  3. Alexandre EMC, Lourenço RV, Bittante AMQB, Moraes ICF, Sobral PJ d A (2016) Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag Shelf Life 10(Supplement C):87–96CrossRefGoogle Scholar
  4. Antoniou J, Liu F, Majeed H, Zhong F (2015) Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Food Hydrocoll 44(Supplement C):309–319CrossRefGoogle Scholar
  5. Aresta A, Calvano CD, Trapani A, Cellamare S, Zambonin CG, De Giglio E (2013) Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications. J Nanopart Res 15(4):1592CrossRefGoogle Scholar
  6. Assis RQ, Lopes SM, Costa TMH, Flôres SH, Rios A d O (2017) Active biodegradable cassava starch films incorporated lycopene nanocapsules. Ind Crop Prod 109(Supplement C):818–827CrossRefGoogle Scholar
  7. Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74(5):N31–N35CrossRefGoogle Scholar
  8. Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crop Prod 97(Supplement C):664–671CrossRefGoogle Scholar
  9. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8CrossRefGoogle Scholar
  10. Bajpai SK, Chand N, Chaurasia V (2010) Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J Appl Polym Sci 115(2):674–683CrossRefGoogle Scholar
  11. Barbosa AAT, Mantovani HC, Jain S (2017) Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 37(7):852–864CrossRefGoogle Scholar
  12. Basch CY, Jagus RJ, Flores SK (2013) Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with Nisin and/or potassium sorbate. Food Bioprocess Technol 6(9):2419–2428CrossRefGoogle Scholar
  13. Basu A, Kundu S, Sana S, Halder A, Abdullah MF, Datta S, Mukherjee A (2017) Edible nano-bio-composite film cargo device for food packaging applications. Food Packag Shelf Life 11(Supplement C):98–105CrossRefGoogle Scholar
  14. Biddeci G, Cavallaro G, Di Blasi F, Lazzara G, Massaro M, Milioto S, Parisi F, Riela S, Spinelli G (2016) Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr Polym 152(Supplement C):548–557CrossRefGoogle Scholar
  15. Bilbao-Sáinz C, Avena-Bustillos RJ, Wood DF, Williams TG, McHugh TH (2010) Nanoemulsions prepared by a low-energy emulsification method applied to edible films. J Agric Food Chem 58(22):11932–11938CrossRefGoogle Scholar
  16. Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86(4):1549–1557CrossRefGoogle Scholar
  17. Boelter JF, Brandelli A (2016) Innovative bionanocomposite films of edible proteins containing liposome-encapsulated nisin and halloysite nanoclay. Colloids Surf B: Biointerfaces 145(Supplement C):740–747CrossRefGoogle Scholar
  18. Chaichi M, Hashemi M, Badii F, Mohammadi A (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157(Supplement C):167–175CrossRefGoogle Scholar
  19. Cui H, Yuan L, Lin L (2017) Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr Polym 177(Supplement C):156–164CrossRefGoogle Scholar
  20. Dammak I, de Carvalho RA, Trindade CSF, Lourenço RV, do Amaral Sobral PJ (2017) Properties of active gelatin films incorporated with rutin-loaded nanoemulsions. Int J Biol Macromol 98(Supplement C):39–49CrossRefGoogle Scholar
  21. de Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30(1):56–69CrossRefGoogle Scholar
  22. De Moura MR, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC (2008) Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles. J Food Sci 73(7):N31–N37CrossRefGoogle Scholar
  23. de Moura MR, Aouada FA, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92(4):448–453CrossRefGoogle Scholar
  24. de Moura MR, Lorevice MV, Mattoso LHC, Zucolotto V (2011) Highly stable, edible cellulose films incorporating chitosan nanoparticles. J Food Sci 76(2):N25–N29CrossRefGoogle Scholar
  25. Fabra MJ, Lopez-Rubio A, Lagaron JM (2013) High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocoll 32(1):106–114CrossRefGoogle Scholar
  26. Fabra MJ, López-Rubio A, Lagaron JM (2014) On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocoll 39(Supplement C):77–84CrossRefGoogle Scholar
  27. Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Ind Crop Prod 95(Supplement C):574–582CrossRefGoogle Scholar
  28. Fu Y, Sarkar P, Bhunia AK, Yao Y (2016) Delivery systems of antimicrobial compounds to food. Trends Food Sci Technol 57(Part A):165–177CrossRefGoogle Scholar
  29. Ganiari S, Choulitoudi E, Oreopoulou V (2017) Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci Technol 68(Supplement C):70–82CrossRefGoogle Scholar
  30. Ge L, Zhu M, Xu Y, Li X, Li D, Mu C (2017) Development of antimicrobial and controlled biodegradable gelatin-based edible films containing nisin and amino-functionalized montmorillonite. Food Bioprocess Technol 10(9):1727–1736CrossRefGoogle Scholar
  31. George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87(3):2031–2037CrossRefGoogle Scholar
  32. Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol Part B 104:1415–1421CrossRefGoogle Scholar
  33. Gul O, Saricaoglu FT, Besir A, Atalar I, Yazici F (2018) Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrason Sonochem 41(Supplement C):466–474CrossRefGoogle Scholar
  34. Han F, Gao CM, Liu MZ (2013) Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers. J Nanosci Nanotechnol 13(10):6996–7007CrossRefGoogle Scholar
  35. Hashemi Gahruie H, Ziaee E, Eskandari MH, Hosseini SMH (2017) Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr Polym 166(Supplement C):93–103CrossRefGoogle Scholar
  36. Imran M, Revol-Junelles A-M, René N, Jamshidian M, Akhtar MJ, Arab-Tehrany E, Jacquot M, Desobry S (2012) Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll 29(2):407–419CrossRefGoogle Scholar
  37. Jang SA, Shin YJ, Seo YB, Song KB (2011) Effects of various plasticizers and nanoclays on the mechanical properties of red algae film. J Food Sci 76(3):N30–N34CrossRefGoogle Scholar
  38. Ji N, Qin Y, Xi T, Xiong L, Sun Q (2017) Effect of chitosan on the antibacterial and physical properties of corn starch nanocomposite films. Starch Stärke 69(1–2):1600114 n/aCrossRefGoogle Scholar
  39. Khan B, Bilal Khan Niazi M, Samin G, Jahan Z (2017) Thermoplastic starch: a possible biodegradable food packaging material—a review. J Food Process Eng 40(3):e12447 n/aCrossRefGoogle Scholar
  40. Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68(1):146–158CrossRefGoogle Scholar
  41. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces 80(2):184–192CrossRefGoogle Scholar
  42. Kumari A, Yadav SK, Pakade YB, Kumar V, Singh B, Chaudhary A, Yadav SC (2011) Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf B: Biointerfaces 82(1):224–232CrossRefGoogle Scholar
  43. Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120CrossRefGoogle Scholar
  44. Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153CrossRefGoogle Scholar
  45. LeCorre D, Bras J, Dufresne A (2012) Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr Polym 87(1):658–666CrossRefGoogle Scholar
  46. Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N (2018) Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 40(Supplement C):68–75CrossRefGoogle Scholar
  47. Li X, Qiu C, Ji N, Sun C, Xiong L, Sun Q (2015) Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 121(Supplement C):155–162CrossRefGoogle Scholar
  48. Liang J, Yan H, Zhang J, Dai W, Gao X, Zhou Y, Wan X, Puligundla P (2017) Preparation and characterization of antioxidant edible chitosan films incorporated with epigallocatechin gallate nanocapsules. Carbohydr Polym 171(Supplement C):300–306CrossRefGoogle Scholar
  49. Lorevice MV, Moura MR d, Aouada FA, Mattoso LHC (2012) Development of novel guava puree films containing chitosan nanoparticles. J Nanosci Nanotechnol 12(3):2711–2717CrossRefGoogle Scholar
  50. Lorevice MV, Moura MR d, Mattoso LHC (2014) Nanocompósito de polpa de mamão e nanopartículas de quitosana para aplicação em embalagens. Química Nova 37:931–936Google Scholar
  51. Lorevice MV, Otoni CG, Moura MR d, Mattoso LHC (2016) Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocoll 52(Supplement C):732–740CrossRefGoogle Scholar
  52. Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38(10):1690–1719CrossRefGoogle Scholar
  53. Lvov YM, DeVilliers MM, Fakhrullin RF (2016a) The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv 13(7):977–986CrossRefGoogle Scholar
  54. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016b) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250CrossRefGoogle Scholar
  55. Martelli MR, Barros TT, de Moura MR, Mattoso LHC, Assis OBG (2013) Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci 78(1):N98–N104CrossRefGoogle Scholar
  56. Melo PTS, Aouada FA, Moura MR d (2017) Fabricação de filmes bionanocompósitos à base de pectina e polpa de cacau com potencial uso como embalagem para alimentos. Química Nova 40:247–251Google Scholar
  57. Moghimi R, Aliahmadi A, Rafati H (2017) Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr Polym 175(Supplement C):241–248CrossRefGoogle Scholar
  58. Moreira FKV, De Camargo LA, Marconcini JM, Mattoso LHC (2013) Nutraceutically inspired pectin–mg(OH)2 nanocomposites for bioactive packaging applications. J Agric Food Chem 61(29):7110–7119CrossRefGoogle Scholar
  59. Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79(4):M675–M684CrossRefGoogle Scholar
  60. Moura MRD, Aouada FA, Souza JR, Mattoso LHC (2014) Preparação de novos nanobiocompósitos comestíveis ativos contendo nanoemulsão de canela e pectina. Polímeros 24:486–490CrossRefGoogle Scholar
  61. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105(Part 2):1358–1368CrossRefGoogle Scholar
  62. Nitin K, Preetinder K, Surekha B (2017) Advances in bio-nanocomposite materials for food packaging: a review. Nutr Food Sci 47(4):591–606Google Scholar
  63. Orsuwan A, Sothornvit R (2017) Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydr Polym 174(Supplement C):235–242CrossRefGoogle Scholar
  64. Otoni CG, Pontes SFO, Medeiros EAA, Soares NDFF (2014a) Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J Agric Food Chem 62(22):5214–5219CrossRefGoogle Scholar
  65. Otoni CG, Moura MR d, Aouada FA, Camilloto GP, Cruz RS, Lorevice MV, Soares N d FF, Mattoso LHC (2014b) Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll 41(Supplement C):188–194CrossRefGoogle Scholar
  66. Otoni CG, Avena-Bustillos RJ, Olsen CW, Bilbao-Sáinz C, McHugh TH (2016a) Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocoll 57(Supplement C):72–79CrossRefGoogle Scholar
  67. Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH (2016b) Trends in antimicrobial food packaging systems: emitting sachets and absorbent pads. Food Res Int 83(Supplement C):60–73CrossRefGoogle Scholar
  68. Otoni CG, Avena-Bustillos RJ, Azeredo HMC, Lorevice MV, Moura MR, Mattoso LHC, McHugh TH (2017) Recent advances on edible films based on fruits and vegetables—a review. Compr Rev Food Sci Food Saf 16(5):1151–1169CrossRefGoogle Scholar
  69. Pathakoti K, Manubolu M, Hwang H-M (2017) Nanostructures: current uses and future applications in food science. J Food Drug Anal 25(2):245–253CrossRefGoogle Scholar
  70. Pérez Córdoba LJ, Sobral PJA (2017) Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. J Food Eng 213(Supplement C):47–53CrossRefGoogle Scholar
  71. Perez Espitia PJ, de Fátima Ferreira Soares N, dos Reis Coimbra JS, de Andrade NJ, Souza Cruz R, Alves Medeiros EA (2012) Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf 11(2):187–204CrossRefGoogle Scholar
  72. Pilon L, Spricigo PC, Miranda M, de Moura MR, Assis OBG, Mattoso LHC, Ferreira MD (2015) Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. Int J Food Sci Technol 50(2):440–448CrossRefGoogle Scholar
  73. Pintado CMBS, Ferreira MASS, Sousa I (2009) Properties of whey protein-based films containing organic acids and Nisin to control listeria monocytogenes. J Food Prot 72(9):1891–1896CrossRefGoogle Scholar
  74. Rodrigues DC, Cunha AP, Brito ES, Azeredo HMC, Gallão MI (2016) Mesquite seed gum and palm fruit oil emulsion edible films: influence of oil content and sonication. Food Hydrocoll 56(Supplement C):227–235CrossRefGoogle Scholar
  75. Roussaki M, Gaitanarou A, Diamanti PC, Vouyiouka S, Papaspyrides C, Kefalas P, Detsi A (2014) Encapsulation of the natural antioxidant aureusidin in biodegradable PLA nanoparticles. Polym Degrad Stab 108(Supplement C):182–187CrossRefGoogle Scholar
  76. Salvia-Trujillo L, Soliva-Fortuny R, Rojas-Graü MA, McClements DJ, Martín-Belloso O (2017) Edible nanoemulsions as carriers of active ingredients: a review. Annu Rev Food Sci Technol 8(1):439–466CrossRefGoogle Scholar
  77. Sasaki RS, Mattoso LHC, de Moura MR (2016) New edible bionanocomposite prepared by pectin and clove essential oil nanoemulsions. J Nanosci Nanotechnol 16(6):6540–6544CrossRefGoogle Scholar
  78. Sasikumar A, Kamalasanan K (2017) Nanomedicine for prostate cancer using nanoemulsion: a review. J Control Release 260(Supplement C):111–123CrossRefGoogle Scholar
  79. Sekhon BS (2010) Food nanotechnology – an overview. Nanotechnol Sci Appl 3:1–15PubMedPubMedCentralGoogle Scholar
  80. Sessini V, Arrieta MP, Kenny JM, Peponi L (2016) Processing of edible films based on nanoreinforced gelatinized starch. Polym Degrad Stab 132(Supplement C):157–168CrossRefGoogle Scholar
  81. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK (2017) Nanoemulsion: concepts, development and applications in drug delivery. J Control Release 252(Supplement C):28–49CrossRefGoogle Scholar
  82. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  83. Sung S-Y, Sin LT, Tee T-T, Bee S-T, Rahmat AR, Rahman WAWA, Tan A-C, Vikhraman M (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33(2):110–123CrossRefGoogle Scholar
  84. Tan B, Thomas NL (2016) A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J Membr Sci 514(Supplement C):595–612CrossRefGoogle Scholar
  85. Wrona M, Cran MJ, Nerín C, Bigger SW (2017) Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydr Polym 156(Supplement C):108–117CrossRefGoogle Scholar
  86. Wu X, Liu Y, Wang W, Han Y, Liu A (2017) Improved mechanical and thermal properties of gelatin films using a nano inorganic filler. J Food Process Eng 40(3):e12469 n/aCrossRefGoogle Scholar
  87. Yu SI, Min SK, Shin HS (2016) Nanocellulose size regulates microalgal flocculation and lipid metabolism. Sci Rep 6:35684CrossRefGoogle Scholar
  88. Yu Z, Alsammarraie FK, Nayigiziki FX, Wang W, Vardhanabhuti B, Mustapha A, Lin M (2017) Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Res Int 99(Part 1):166–172CrossRefGoogle Scholar
  89. Zheng H, Ai F, Chang PR, Huang J, Dufresne A (2009) Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Compos 30(4):474–480CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Paula J. P. Espitia
    • 1
  • Caio G. Otoni
    • 2
  1. 1.Nutrition and Dietetics SchoolUniversidad del AtlánticoCarrera 30 Número 8- 49. Puerto ColombiaColombia
  2. 2.National Nanotechnology Laboratory for AgribusinessEmbrapa InstrumentacãoSão CarlosBrazil

Personalised recommendations