Advertisement

Plastic Waste: Environmental Hazards, Its Biodegradation, and Challenges

  • Kadapakkam Nandabalan Yogalakshmi
  • Sukhman Singh
Chapter

Abstract

Plastics have become an indispensable part of the society. Lightweight, easy handling, durability, flexibility, resistance to water, and other microbial attacks have made them ubiquitously popular. The extensive use of the long-lived polymer has confronted the environment with a challenging plastic pollution problem. Plastics are the product of coal, natural gas, crude oil, cellulose, and salt manufactured through energy-intensive technology. From cradle to grave, plastics affect the environment in a multifaceted way. The hazardous and ecologically (terrestrial and marine) damaging threats necessitate its removal from the environment. Incineration, landfilling, recycling, and degradation are the four most available options to manage the plastic waste. However, to avoid long-term environmental damage, degradation of plastic is the most preferred option among the management options. Plastic degradation is carried out by photodegradation, thermooxidative degradation, hydrolytic degradation, and biodegradation. Among them, microbial degradation using bacteria and fungi is an emerging strategy to manage plastic waste. Hence, this chapter highlights the benefits, concerns, and threats surrounding the use of plastics. The different perspectives covered in this chapter include plastic production and plastic waste generation, environmental and health effects of plastic pollution, plastic waste management options, biodegradation of plastic polymers and the mechanism involved, biodegradable plastics, and challenges and constraints of plastic waste biodegradation.

Keywords

Plastics Environmental effects Polymers Biodegradation Biopolymers 

References

  1. Abrusci C, Pablos JL, Corrales T, López-Marín J, Marín I, Catalina F (2011) Biodegradation of photo-degraded mulching films based on polyethylenes and  stearates of calcium and iron as pro-oxidant additives. Int Biodeter Biodegr 65(3):451–459CrossRefGoogle Scholar
  2. Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67Google Scholar
  3. Akutsu-Shigeno Y, Adachi Y, Yamada C, Toyoshima K, Nomura N, Uchiyama H, Nakajima-Kambe T (2006) Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase. Appl Microbiol Biotechnol 70(4):422–429CrossRefGoogle Scholar
  4. Ali MI, Ahmed S, Robson G, Javed I, Ali N, Atiq N, Hameed A (2014) Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54(1):18–27CrossRefGoogle Scholar
  5. Almeida D, Marques MDF (2016) Thermal and catalytic pyrolysis of plastic waste. Polímeros 26(1):44–51CrossRefGoogle Scholar
  6. Alshehrei F (2017) Biodegradation of synthetic and natural plastic by microorganisms. Journal of Applied and Environmental Microbiology 5:8–19Google Scholar
  7. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29(10):2625–2643CrossRefGoogle Scholar
  8. American Chemistry Council (2005) Plastics industry producer statistics groupGoogle Scholar
  9. Arena U, Mastellone ML (1999) Particle agglomeration during energy recovery from plastic wastes by means of fluidized bed reactors (No. CONF-990534--). Univ. Federico II of Naples, NapoliGoogle Scholar
  10. Ashwin Kumar A, Karthick K, Arumugam KP (2011) Biodegradable polymers and its applications. Int J Biosci Biochem Bioinformatics 1(3):173–176Google Scholar
  11. Association of Plastic Manufacturers Europe (2015) An analysis of European plastics production, demand and waste data. European Association of Plastics Recycling and Recovery Organisations, Belgium, pp 1–32Google Scholar
  12. Aswale P (2010) Studies on bio-degradation of polythene. PhD thesis, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, IndiaGoogle Scholar
  13. Aswale P, Ade A (2008) Assessment of the biodegradation of polythene. Bioinfolet 5:239–245Google Scholar
  14. Aswale PN, Ade AB (2009) Effect of pH on biodegradation of polythene by Serretia marscence. The Ecotech 1:152–153Google Scholar
  15. Augusta J, Müller R-J, Widdecke H (1993) A rapid evaluation plate-test for the biodegradability of plastics. Appl Microbiol Biotechnol 39(4–5):673–678Google Scholar
  16. Auta HS, Emenike CU, Fauziah SH (2017) Screening of Bacillus strains isolated from mangrove ecosystems in peninsular Malaysia for microplastic degradation. Environ Pollut 231:1552–1559CrossRefGoogle Scholar
  17. Awasthi S, Srivastava N, Singh T, Tiwary D, Mishra PK (2017) Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech 7(1)Google Scholar
  18. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh Kannan V (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of gulf of Mannar, India. Lett Appl Microbiol 51:205–211Google Scholar
  19. Balasubramanian S, Maruthamuthu S, Alika K, Palanisamy N, Muralidharan VS, Ragunathan R, Kannan M, Navaneetha Pandiyaraj K (2011) Influence of thermal oxidation on surface and thermo-mechanical properties of polyethylene. J Polym Res 18(6):2175–2184CrossRefGoogle Scholar
  20. Balasubramanian V, Natarajan K, Rajesh Kannan V, Perumal P (2014) Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical and biological treatments. Environ Sci Pollut Res 21:12,549–12,562CrossRefGoogle Scholar
  21. Bharagava RN, Saxena G, Chowdhary P (2017a) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 397–426.  https://doi.org/10.1201/9781315173351-15 CrossRefGoogle Scholar
  22. Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22.  https://doi.org/10.1201/9781315173351-2 CrossRefGoogle Scholar
  23. Bhatt R, Panchal B, Patel K, Sinha VK, Trivedi U (2008) Synthesis, characterization, and biodegradation of carboxymethylchitosan-g-medium chain length polyhydroxyalkanoates. J Appl Polym Sci 110(2):975–982CrossRefGoogle Scholar
  24. Blake RC, Howard GT (1998) Adhesion and growth of a Bacillus sp. on a polyesterurethane. Int Biodeterior Biodegrad 42:63–73Google Scholar
  25. Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60(12):2275–2278CrossRefGoogle Scholar
  26. Bonhomme S, Cuer A, Delort A-M, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81(3):441–452CrossRefGoogle Scholar
  27. Boubendir A (1993) Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin. Dissertation Abstract International 53:4632Google Scholar
  28. Briassoulis D, Dejean C (2010) Critical review of norms and standards for biodegradable agricultural plastics part Ι biodegradation in soil. J Polym Environ 18:384–400CrossRefGoogle Scholar
  29. Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupatelli P, Sermanni GG (1993) Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl Environ Microbiol 59(11):3695–3700Google Scholar
  30. Central Pollution Control Board (2011) Annual report on plastic waste management. http://cpcb.nic.in/displaypdf
  31. Chandra R, Rustgi R (1997) Biodegradation of maleated linear low-density polyethylene and starch blends. Polym Degrad Stab 56(2):185–202CrossRefGoogle Scholar
  32. Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–30.  https://doi.org/10.1201/b18218-2 CrossRefGoogle Scholar
  33. Chatterjee S, Roy B, Roy D, Banerjee R (2010) Enzyme-mediated biodegradation of heat treated commercial polyethylene by staphylococcal species. Polym Degrad Stab 95(2):195–200CrossRefGoogle Scholar
  34. Coelho NS, Almeida Y, Vinhas GM (2008) The biodegradation of polyhydroxybutyrate-co-valerate/amphiprotic starch in the presence of microorganisms. Polímeros 18(3):270–276CrossRefGoogle Scholar
  35. Cosgrove L, McGeechan PL, Robson GD, Handley PS (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 73(18):5817–5824CrossRefGoogle Scholar
  36. Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW (1994) Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int Biodeter Biodegr 33(2):103–113CrossRefGoogle Scholar
  37. Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23(2):147–161CrossRefGoogle Scholar
  38. De Queiroz Lamas W, Palau JCF, de Camargo JR (2013) Waste materials co-processing in cement industry: ecological efficiency of waste reuse. Renew Sust Energ Rev 19:200–207CrossRefGoogle Scholar
  39. Demirbas A (2007) Biodegradable plastics from renewable resources. Energy Sources, Part A 29(5):419–424CrossRefGoogle Scholar
  40. Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852CrossRefGoogle Scholar
  41. Devi RS, Kannan VR, Natarajan K, Nivas D, Kannan K, Chandru S, Antony AR (2016) The role of microbes in plastic degradation. In: Environmental waste management. Taylor and francis publication, Boca RatonGoogle Scholar
  42. Divyalakshmi S, Subhashini A (2016) Screening and isolation of polyethylene degrading bacteria from various soil environments. IOSR J Environ Sci Toxicol Food Technol 10(12):1–7Google Scholar
  43. Dussud C, Ghiglione JF (2014) Bacterial degradation of synthetic plastics. In CIESM Workshop Monogr (No. 46)Google Scholar
  44. Dwyer DF, Tiedje JM (1983) Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia. Appl Environ Microbiol 46(1):185–190Google Scholar
  45. El-Shafei HA, Abd El-Nasser NH, Kansoh AL, Ali AM (1998) Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym Degrad Stab 62(2):361–365CrossRefGoogle Scholar
  46. Fergusson WC (1974) Summary. In: Staudinger JJP (ed) Plastics and the environment. Hutchinson and Co, London, p 2Google Scholar
  47. Fontanella S, Bonhomme S, Koutny M, Husarova L, Brusson JM, Courdavault JP, Pitteri S et al (2009) Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym Degrad Stab 95:1011–1021CrossRefGoogle Scholar
  48. Friedrich J, Zalar P, Mohorčič M, Klun U, Kržan A (2007) Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere 67(10):2089–2095CrossRefGoogle Scholar
  49. Gawande A, Zamare G, Renge VC, Tayde S, Bharsakale G (2012) An overview on waste plastic utilization in asphalting of roads. J Eng Res Stud 3(2):1–5Google Scholar
  50. Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104Google Scholar
  51. Glass JE, Swift G (1990) Agricultural and Synthetic Polymers, Biodegradation and Utilization, ACS Symposium Series No. 433. ACS, Washington, pp. xi + 323Google Scholar
  52. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98(5):1093–1100CrossRefGoogle Scholar
  53. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194CrossRefGoogle Scholar
  54. Halim A, El-Sayed MM, Mahmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbondegrading bacteria. Int Biodeter Biodegr 37(1–2):69–79Google Scholar
  55. Harding KG, Dennis JS, Von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130(1):57–66CrossRefGoogle Scholar
  56. Hasan F, Shah AA, Hameed A, Ahmed S (2007) Synergistic effect of photo and chemical treatment on the rate of biodegradation of low density polyethylene by fusarium sp. AF4. J Appl Polym Sci 105(3):1466–1470CrossRefGoogle Scholar
  57. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond B: Biol Sci 364(1526):2115–2126CrossRefGoogle Scholar
  58. Howard GT, Blake RC (1999) Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int Biodeterior Biodegrad 42:213–220CrossRefGoogle Scholar
  59. Howard GT, Hilliard NP (1999) Use of Coomassie blue-polyurethane interaction inscreening of polyurethanase proteins and polyurethanolytic bacteria. Int Biodeter Biodegr 43(1–2):23–30CrossRefGoogle Scholar
  60. Howard GT, Norton WN, Burks T (2012) Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation 23(4):561–573CrossRefGoogle Scholar
  61. Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99CrossRefGoogle Scholar
  62. Iiyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44(3):222–229CrossRefGoogle Scholar
  63. Janczak K, Hrynkiewicz K, Znajewska Z, Dąbrowska G (2018) Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. Int Biodeter Biodegr 130:65–75CrossRefGoogle Scholar
  64. Jarerat A, Tokiwa Y (2001) Degradation of poly(tetramethylene succinate) by thermophilic actinomycetes. Biotechnol Lett 23(8):647–651Google Scholar
  65. Jen-hou L, Schwartz A (1961) Zum Verhalten von bakteriengemischen gegentiber polyfithylen verschiedenen mittleren Molekulargewichts. Kunststoffe 51:317–320Google Scholar
  66. Ji-Dong G (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeter Biodegr 52(2):69–91Google Scholar
  67. Kalia VC, Raizada N, Sonakya V (2000) Bioplastics. J Sci Ind Res 59:433–445Google Scholar
  68. Kannahi M, Sudha P (2013) Screening of polythene and plastic degrading microbes from Muthupet mangrove soil. J Chem Pharm Res 5(8):122–127Google Scholar
  69. Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51(3–4):629–633Google Scholar
  70. Kawai F, Kimura T, Fukaya M, Tani Y, Ogata K, Ueno T, Fukami H (1978) Bacterial oxidation of polyethylene glycol. Appl Environ Microbiol 35(4):679–684Google Scholar
  71. Kay MJ, Morton LHG, Prince EL (1991) Bacterial degradation of polyester polyurethane. Int Biodeterior 27(2):205–222CrossRefGoogle Scholar
  72. Khullar M (2009) Plastic roads offer greener way to travel in India. The New York Times 13Google Scholar
  73. Kırbaş Z, Keskin N, Güner A (1999) Biodegradation of polyvinylchloride (PVC) by white rot fungi. Bull Environ Contam Toxicol 63(3):335–342CrossRefGoogle Scholar
  74. Kitamoto H (2008) Where are biodegradable plastic-degrading microorganisms? BRAIN Technol News 129:1–6Google Scholar
  75. Konduri MKR, Anupam KS, Vivek JS, Kumar RDB, Narasu ML (2010) Synergistic effect of chemical and photo treatment on the rate of biodegradation of high density polyethylene by indigenous fungal isolates. International Journal of Biotechnology and Biochemistry 6:157–174Google Scholar
  76. Konduri MKR, Koteswarareddy G, Kumar DBR, Reddy BV, Narasu ML (2011) Effect of prooxidants on biodegradation of polyethylene (LDPE) by indigenous fungal isolate, Aspergillus oryzae. J Appl Polym Sci 120:3536–3545CrossRefGoogle Scholar
  77. Korawit Chaisu (2016). Study of plastic degrading bacteria by Aneurinibacillus migulanus, Management and Innovation Technology International Conference (MITicon), MIT-209 - MIT-212, IEEE ConferencesGoogle Scholar
  78. Kumar S, Singh RK (2013) Thermolysis of high-density polyethylene to petroleum products. J Pet Eng 2013:987568Google Scholar
  79. Kumar S, Hatha AAM, Christi KS (2007) Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev Biol Trop 55(3–4):777–786Google Scholar
  80. Kumar S, Das M, Jeyanthi Rebecca L, Sharmila S (2013) Isolation and identification of LDPE degrading fungi from municipal solid waste. J Chem Pharm Res 5(3):78–81Google Scholar
  81. Kunwar B, Cheng HN, Chandrashekaran SR, Sharma BK (2016) Plastics to fuel: a review. Renew Sust Energ Rev 54:421–428CrossRefGoogle Scholar
  82. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52(3):411–419CrossRefGoogle Scholar
  83. Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Mar Pollut Bull 18(6):319–326CrossRefGoogle Scholar
  84. Latini G (2005) Monitoring phthalate exposure in humans. Clin Chim Acta 361(1):20–29CrossRefGoogle Scholar
  85. Lee SY (1996a) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14CrossRefGoogle Scholar
  86. Lee SY (1996b) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14(11):431–438CrossRefGoogle Scholar
  87. Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685Google Scholar
  88. Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566:333–349CrossRefGoogle Scholar
  89. Liyoshi Y, Tsutsumi Y, Nishida T (1998) Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J Wood Sci 44:222–229CrossRefGoogle Scholar
  90. Madhuri JR (2015) Biodegradation of low density polyethylene by micro-organisms from garbage soil. J Exp Biol Agric Sci 3(1):15–21Google Scholar
  91. Mehmood CT, Qazi IA, Hashmi I, Bhargava S, Deepa S (2016) Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int Biodeter Biodegr 113:276–286CrossRefGoogle Scholar
  92. Méndez CR, Vergaray G, Vilma R, Karina B, Cárdenas J (2007) Isolation and characterization of polyethylene-biodegrading mycromycetes. Rev Peru Biol 13(3):203–205Google Scholar
  93. Molitoris HP, Moss ST, De Koning GJM, Jendrossek D (1996) Scanning electron microscopy of polyhydroxyalkanoate degradation by bacteria. Appl Microbiol Biotechnol 46(5):570–579CrossRefGoogle Scholar
  94. Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108(2):131–139CrossRefGoogle Scholar
  95. Murphy, R, Bartle, I (2004) Summary Report, Biodegradable Polymers and Sustainability: Insight from Life-cycle Assessment. National Non Food Crops Centre, UK. (PDF) Compostable packaging based on fibrous natural materials and bioplastics. Preliminary results. Available from: https://www.researchgate.net/publication/318361044_Compostable_packaging_based_on_fibrous_natural_materials_and_bioplastics_Preliminary_results. Accessed Aug 27 2018
  96. Muthukumar A, Veerappapillai S (2015) Biodegradation of plastics – a brief review. Int J Pharm Sci Res 3(2):204–209Google Scholar
  97. Nair S, Kumar P (2007) Molecular characterization of a lipase-producing Bacillus pumilus strain (NMSN1d) utilizing colloidal water-dispersible polyurethane. World J Microbiol Biotechnol 23:1441–1449CrossRefGoogle Scholar
  98. Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiol Lett 129(1):39–42CrossRefGoogle Scholar
  99. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51(2):134–140CrossRefGoogle Scholar
  100. Nakkabi A, Sadiki M, Fahim M, Ittobane N, Ibnsouda Koraichi S, Barkai H, El abed S (2015) Biodegradation of poly(ester urethane)s by Bacillus subtilis. Int J Environ Res 9(1):157–162Google Scholar
  101. Nanda S, Sahu SS (2010) Biodegradability of polyethylene by Brevibacillus, Pseudomonas, and Rhodococcus spp. N Y Sci J 3(7):95–98Google Scholar
  102. Nanda S, Sahu S, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manag 14(2)Google Scholar
  103. National Environmental Engineering Research Institute, NEERI (2010) Air quality assessment. Emissions Inventory and Source Apportionment Studies, MumbaiGoogle Scholar
  104. Nema SK, Ganeshprasad KS (2002) Plasma pyrolysis of medical waste. Curr Sci 83:271–278Google Scholar
  105. Novotný Č, Erbanová P, Sezimová H, Malachová K, Rybková Z, Malinová L, Brožek J (2015) Biodegradation of aromatic-aliphatic copolyesters and polyesteramides by esterase activity-producing microorganisms. Int Biodeter Biodegr 97:25–30CrossRefGoogle Scholar
  106. Obidi OF, Nwachukwu SCU, Aboaba OO (2010) Possible prevention of environmental health Hazard of Lead-based paints. Res J Microbiol 5(7):595–606CrossRefGoogle Scholar
  107. Oceguera-Cervantes A, Carrillo-García A, López N, Bolaños-Nuñez S, Cruz-Gómez MJ, Wacher C, Loza-Tavera H (2007) Characterization of the polyurethanolytic activity of two Alicycliphilus sp. strains able to degrade polyurethane and N-methylpyrrolidone. Appl Environ Microbiol 73(19):6214–6223CrossRefGoogle Scholar
  108. Odusanya SA, Nkwogu JV, Alu N, Etuk Udo GA, Ajao JA, Osinkolu GA, Uzomah AC (2013) Preliminary studies on microbial degradation of plastics used in packaging potable water in Nigeria. Nigerian Food Journal 31(2):63–72CrossRefGoogle Scholar
  109. O’Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60(12):2279–2283CrossRefGoogle Scholar
  110. Oda Y, Oida N, Urakami T, Tonomura K (1997) Polycaprolactone depolymerase produced by the bacterium Alcaligenes faecalis. FEMS Microbiol Lett 152(2):339–343CrossRefGoogle Scholar
  111. Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7(1)Google Scholar
  112. Paço A, Duarte K, da Costa JP, Santos PSM, Pereira R, Pereira ME, Freitas AC, Duarte AC, Rocha-Santos TAP (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15CrossRefGoogle Scholar
  113. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products-a world prospective. Renew Sust Energ Rev 14(1):233–248CrossRefGoogle Scholar
  114. Vinay Mohan Pathak, Navneet (2017) Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing 4 (1)Google Scholar
  115. Pathirana RA, Seal KJ (1985) Studies on polyurethane deteriorating fungi: IV: a note on the spectro-chemical changes during fungal deterioration. Int Biodeterior 21(2):123–125Google Scholar
  116. Peciulyte D (2002) Microbial colonization and biodeterioration of plasticized polyvinyl chloride plastics. Ekologija 4:7–15Google Scholar
  117. Peng Y-H, Shih Y-h, Lai Y-C, Liu Y-Z, Liu Y-T, Lin N-C (2014) Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ Sci Pollut Res 21(16):9529–9537CrossRefGoogle Scholar
  118. Plastic Waste Management Rules (2016), Ministry of Environment forest and climate change notification http://www.moef.gov.in/sites/default/files/PWM%20Rules,%202016_0.pdf
  119. Pometto AL III, Lee BT, Johnson KE (1992) Production of an extracellular polyethylene degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58:731–733Google Scholar
  120. Pospíšil J, Nešpůrek S (1997) Highlights in chemistry and physics of polymer stabilization. Macromol Symp 115(1):143–163CrossRefGoogle Scholar
  121. Pramila R, Vijaya Ramesh K (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. J Microbiol Biotech Res 1(4):131–136Google Scholar
  122. Priyanka N, Archana T (2011) Biodegradability of polythene and plastic by the help of microorganism: a way for brighter future. J Environ Anal Toxicol 01(02)Google Scholar
  123. Punčochář M, Ruj B, Chatterj PK (2012) Development of process for disposal of plastic waste using plasma pyrolysis technology and option for energy recovery. Procedia Eng 42:420–430CrossRefGoogle Scholar
  124. Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by aspergillus spp. isolated from polythene polluted sites around Chennai. Journal of Academia and Industrial Research 1(6):313–316Google Scholar
  125. Rawte T, Padte M, Mavinkurve S (2002) Incidence of marine and mangrove bacteria accumulating polyhydroxyalkanoates on the mid-west coast of India. World J Microbiol Biotechnol 18:655–659CrossRefGoogle Scholar
  126. Rebeiz KS, Craft AP (1995) Plastic waste management in construction: technological and institutional issues. Resour Conserv Recycl 15(3–4):245–257CrossRefGoogle Scholar
  127. Reddy RM (2008) Impact of soil composting using municipal solid waste on biodegradation of plastics. Indian J Biotechnol 7:235–239Google Scholar
  128. Rutkowska M, Heimowska A, Krasowska K, Janik H (2002) Biodegradability of polyethylene starch blends in sea water. Pol J Environ Stud 11:267–274Google Scholar
  129. Sachin SS, Mishra RL (2013) Screening and identification of soil fungi with potential of plastic degrading ability. Indian Journal of Applied Research 3(11):34–36Google Scholar
  130. Saminathan P, Sripriya A, Nalini K, Sivakumar T, Thangapandian V (2014) Biodegradation of plastics by Pseudomonas putida isolated from garden soil samples. J of Advanced Botany and Zoology Vol 1(3):1–4Google Scholar
  131. Sang BI, Hori K, Tanji Y, Unno H (2002) Fungal contribution to in situ biodegradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) film in soil. Appl Microbiol Biotechnol 58(2):241–247CrossRefGoogle Scholar
  132. Sarker M, Rashid MM, Molla M (2011) Waste plastic conversion into chemical product like naphtha. J Fundam Renew Energy Appl 1:110101Google Scholar
  133. Sathya R, Ushadevi T, Panneerselvam A (2012) Plastic degrading actinomycetes isolated from mangrove sediments. International Journal of Current Research 4(10):001–003Google Scholar
  134. Sathyanarayana S (2008) Phthalates and children’s health. Curr Probl Pediatr Adolesc Health Car 38(2):34–49CrossRefGoogle Scholar
  135. Savoldelli J, Tomback D, Savoldelli H (2017) Breaking down polystyrene through the application of a two-step thermal degradation and bacterial method to produce usable byproducts. Waste Manag 60:123–126CrossRefGoogle Scholar
  136. Saxena G, Bharagava RN (2016) Ram Chandra: advances in biodegradation and bioremediation of industrial waste. Clean Techn Environ Policy 18:979–980.  https://doi.org/10.1007/s10098-015-1084-9 CrossRefGoogle Scholar
  137. Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–56.  https://doi.org/10.1201/9781315173351-3 CrossRefGoogle Scholar
  138. Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2018) Phytoremediation of heavy metal-contaminated sites: environmental considerations, field studies, sustainability and future prospects. J Environ ManagGoogle Scholar
  139. Schecter A, Malik N, Haffner D, Smith S, Harris TR, Paepke O, Birnbaum L (2010) Bisphenol a (BPA) in US food. Environ Sci Technol 44(24):9425–9430CrossRefGoogle Scholar
  140. Schink B, Janssen PH, Frings J (1992) Microbial degradation of natural and of new synthetic polymers. FEMS Microbiol Lett 103(2–4):311–316CrossRefGoogle Scholar
  141. Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3(1):462–473Google Scholar
  142. Seneviratne G, Tennkoon NS, Weerasekara MLMAW, Nandasena KA (2006) Polythene biodegradation by a developed Penicillium- Bacillus biofilm. Curr Sci 90:20–21Google Scholar
  143. Shah AA, Hasan F, Hameed A, Ahmed S (2007) Isolation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) degrading bacteria and purification of PHBV depolymerase from newly isolated Bacillus sp. AF3. Int Biodeter Biodegr 60(2):109–115CrossRefGoogle Scholar
  144. Shah AA, Hasan F, Akhter JI, Hameed A, Ahmed S (2008a) Degradation of polyurethane by novel bacterial consortium isolated from soil. Ann Microbiol 58(3):381–386CrossRefGoogle Scholar
  145. Shah AA, Hasan F, Hameed A, Ahmed S (2008b) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265CrossRefGoogle Scholar
  146. Shah AA, Hasan F, Akhter J, Hameed A, Ahmed S (2009) Isolation of fusarium sp. AF4 from sewage sludge, with the ability to adhere the surface of polyethylene. Afr J Microbiol Res 3:658–663Google Scholar
  147. Shah Z, Hasan F, Lee K, Atkas D, Shah AA (2013) Degradation of polyester polyurethane by newly isolated Pseudomonas aeruginosa strain MZA-85 and analysis of degradation products by GC-MS. Int Biodeter Biodegr 79:105Google Scholar
  148. Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities–a review. Waste Manag 28(2):459–467CrossRefGoogle Scholar
  149. Sharma A, Sharma A (2004) Degradation assessment of low density polythene (LDPE) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri. J Sci Ind Res 63:293–296Google Scholar
  150. Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manag 28(10):1835–1852CrossRefGoogle Scholar
  151. Singh S, Li SSL (2012) Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int J Mol Sci 13(8):10143–10153CrossRefGoogle Scholar
  152. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93(3):561–584CrossRefGoogle Scholar
  153. Singh G, Singh AK, Bhatt K (2016) BIODEGRADATION OF POLYTHENES BY BACTERIA ISOLATED FROM SOIL. Int J Res Dev Pharm Life Sci 5(2):2056–2062Google Scholar
  154. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B 115:409–422CrossRefGoogle Scholar
  155. Sinosh S, Megha M, Kini MN, Mukund KM, Rizvi A, Vasist K (2015) Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environ Monit Assess 187(1)Google Scholar
  156. Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72(2):346–352CrossRefGoogle Scholar
  157. Skariyachan S, Patil AA, Shankar A, Manjunath M, Bachappanavar N, Kiran S (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. And Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab 149:52–68CrossRefGoogle Scholar
  158. Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc B 364(1526):2127–2139CrossRefGoogle Scholar
  159. Sowmya HV, Ramalingappa Krishnappa M (2014) Environ Monit Assess 186:65–77CrossRefGoogle Scholar
  160. Suzuki J, Hukushima K, Suzuki S (1978) Effect of ozone treatment upon biodegradability of water-soluble polymers. Environ Sci Technol 12(10):1180–1183CrossRefGoogle Scholar
  161. Tang L, Huang H, Zhao Z, Wu CZ, Chen Y (2003) Pyrolysis of polypropylene in a nitrogen plasma reactor. Ind Eng Chem Res 42(6):1145–1150CrossRefGoogle Scholar
  162. Tang Z, Huang Q, Cheng J, Yang Y, Yang J, Guo W, Jin L (2014) Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: a neglected heavily polluted area. Environ Sci Technol 48(3):1508–1516CrossRefGoogle Scholar
  163. Thompson RC, Moore CJ, Vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B: Biol Sci 364(1526):2153–2166CrossRefGoogle Scholar
  164. Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270(5632):76–78CrossRefGoogle Scholar
  165. Tokiwa Y, Calabia B, Ugwu C, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742CrossRefGoogle Scholar
  166. Usha R, Sangeetha T, Palaniswamy M (2011) Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agricultural Research Center Journal International 2:200–204Google Scholar
  167. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95CrossRefGoogle Scholar
  168. Varesche MB, Zaiat M, Vieira LGT, Vazoller RF, Foresti E (1997) Microbial colonization of polyurethane foam matrices in horizontal-flow anaerobic immobilized-sludge reactor. Appl Microbiol Biotechnol 48(4):534–538CrossRefGoogle Scholar
  169. Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste-a review. Procedia Environ Sci 35:701–708CrossRefGoogle Scholar
  170. Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus Subtilis. Procedia Technology 24:232–239CrossRefGoogle Scholar
  171. Volke-Sepulveda T, Saucedo-Castaneda G, Gutierrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314CrossRefGoogle Scholar
  172. Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66(8):3194–3200CrossRefGoogle Scholar
  173. Wu G, Li J, Xu Z (2013) Triboelectrostatic separation for granular plastic waste recycling: a review. Waste Manag 33(3):585–597CrossRefGoogle Scholar
  174. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72(2):323–327CrossRefGoogle Scholar
  175. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Oda K (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351(6278):1196–1199CrossRefGoogle Scholar
  176. Zgoła-Grześkowiak A, Grześkowiak T, Zembrzuska J, Łukaszewski Z (2006) Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s. Chemosphere 64(5):803–809CrossRefGoogle Scholar
  177. Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Kadapakkam Nandabalan Yogalakshmi
    • 1
  • Sukhman Singh
    • 1
  1. 1.Centre for Environmental Science and Technology, School of Environment and Earth SciencesCentral University of PunjabBathindaIndia

Personalised recommendations