Advertisement

Bioremediation: An Eco-friendly Cleanup Strategy for Polyaromatic Hydrocarbons from Petroleum Industry Waste

  • Dhanya M. S. 
  • Arun Kalia
Chapter

Abstract

The polycyclic aromatic hydrocarbons (PAHs) are a major pollutant from petroleum industry and oil refineries. This group of organic xenobiotics is produced either by pyrolytic or petrogenic sources. The physicochemical properties of PAHs such as hydrophobicity and electrochemical stability increase its persistence in the environment and add to the carcinogenicity and other health impacts. The major degradation processes of PAH in the environment are adsorption, volatilization, photolysis, chemical oxidation, bioaccumulation, and microbial degradation. The microbial communities like bacteria, fungi, and algae play a significantly important role in the biological removal of PAHs. The natural attenuation, bioaugmentation, biostimulation, phytoremediation, rhizoremediation, and composting are major bioremediation approaches for PAHs from contaminated environment. The enzymes linked with the PAH degradation are mainly oxygenases, manganese peroxidases, lipases, and laccases. The surfactant production in the microbes increases the bioavailability of PAH and enhanced the removal process. The PAH degradation depends on the various environmental conditions such as temperature, pH, aeration, moisture content, nutrient availability, absence of toxic compounds, and the type and number of degrading microbial population. The bacterial and fungal degradation pathways produce intermediate metabolites and mineralization to carbon dioxide. The molecular techniques like gene engineering and protein engineering improve the removal of PAHs. Thus the biodegradation of PAHs is linked to the carbon cycle and remediation of these persistent organo-molecules from the environment.

Keywords

Petroleum industry Polycyclic aromatic hydrocarbons Biodegradation Enzymes Biosurfactant Metabolites 

Notes

Acknowledgment

The authors acknowledge the Central University of Punjab, Bathinda, for providing the facilities for the preparation of this manuscript and research work.

References

  1. Acevedo F, Pizzul L, Castillo MD, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219CrossRefGoogle Scholar
  2. Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Biorem Biodegrad 3:28–39Google Scholar
  3. Ahirwar S, Dehariya K (2013) Isolation and characterization of hydrocarbon degrading microorganisms from petroleum oil contaminated soil sites. Bull Environ Sci Res 2(4):5–10Google Scholar
  4. Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29:2713–2717CrossRefGoogle Scholar
  5. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, New YorkGoogle Scholar
  6. Amir S, Hafidi M, Merlina G, Hamdi H, Revel JC (2005) Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge. Chemosphere 58:449–458CrossRefGoogle Scholar
  7. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636CrossRefGoogle Scholar
  8. Antizar-Ladislao B, Lopez-Real J, Beck A (2004) Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Crit Rev Environ Sci Technol 34:249–289CrossRefGoogle Scholar
  9. Antizar-Ladislao B, Lopez-Real J, Beck A (2006) Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions. Environ Pollut 141(3):459–468CrossRefGoogle Scholar
  10. Aparna A, Srinikethan G, Hedge S (2011) Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. In: International proceedings of chemical, biological & environmental engineering. Proceedings of the 2nd International Proceedings of Chemical, Singapore, Singapore, 26–28 February 2011; Volume 6, p 71–75Google Scholar
  11. Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerfaces 95:23–29CrossRefGoogle Scholar
  12. Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemotherapy 20:253–265Google Scholar
  13. Arulazhagan P, Vasudevan N (2011) Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. J Environ Sci (China) 23:282–287CrossRefGoogle Scholar
  14. Atagana HI (2004) Co-composting of PAH-contaminated soil with poultry manure. Lett Appl Microbiol 39:163–168CrossRefGoogle Scholar
  15. ATSDR (2010) In US Agency for Toxic Substances and diseases Registry (ed) Toxicological profile for plutonium, 320 pp. US Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  16. Ball AS, Jackson AM (1995) The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresour Technol 54:311–314CrossRefGoogle Scholar
  17. Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oilseeds. J Environ Biol 35:521–529Google Scholar
  18. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  19. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications. Appl Microbiol Biotechnol 87:427–444CrossRefGoogle Scholar
  20. Batista RM, Rufino RD, Luna JM, Souza JEG, Sarubbo LA (2010) Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environ Res 82:418–425CrossRefGoogle Scholar
  21. Beaudin N, Caron RF, Legros R, Ramsay J, Ramsay B (1999) Identification of the key factors affecting composting of a weathered hydrocarbon contaminated soil. Biodegradation 10:L 127–L 133CrossRefGoogle Scholar
  22. Betts WB (2012) Biodegradation: natural and synthetic materials. Springer, New YorkGoogle Scholar
  23. Bewley RJF, Webb G (2001) In situ bioremediation of groundwater contaminated with phenols, BTEX and PAHs using nitrate as electron acceptor. Land Contam Reclam 9:335–347Google Scholar
  24. Bezalel L, Hadar Y, Cerniglia CE (1996a) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:292–295Google Scholar
  25. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996b) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559Google Scholar
  26. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996c) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553Google Scholar
  27. Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in Phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501Google Scholar
  28. Bharagava RN, Chowdhary P, Saxena G (2017a) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–22.  https://doi.org/10.1201/9781315173351-2 CrossRefGoogle Scholar
  29. Bharagava RN, Saxena G, Chowdhary P (2017b) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 397–426.  https://doi.org/10.1201/9781315173351-15 CrossRefGoogle Scholar
  30. Bisht S, Pandey P, Sood A, Sharma S, Bisht NS (2010) Biodegradation of naphthalene and anthracene by chemotactically active rhizobacteria of Populus deltoides. Braz J Microbiol 41(4):922–930CrossRefGoogle Scholar
  31. Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, Kumar V, Bisht NS (2014) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol 60:67–76CrossRefGoogle Scholar
  32. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma SD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21CrossRefGoogle Scholar
  33. Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of hanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603Google Scholar
  34. Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52:1717–1726CrossRefGoogle Scholar
  35. Bogan BW, Schoenike B, Lamar RT, Cullen D (1996a) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 62:2381–2386Google Scholar
  36. Bogan BW, Lamar RT, Hammel KE (1996b) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788–1792Google Scholar
  37. Bogan BW, Lahner LM, Sullivan WR, Paterek JR (2003) Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. J Appl Microbiol 94:230–239CrossRefGoogle Scholar
  38. Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59:1927–1930Google Scholar
  39. Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 435–473Google Scholar
  40. Boxall ABA, Maltby L (1997) The effects of motorway runoff on freshwater ecosystems. (3). Toxicant confirmation. Arch Environ Contam Toxicol 33:9–16CrossRefGoogle Scholar
  41. Brook TR, Stiver WH, Zytner RG (2001) Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil Sediment Contam: Int J 10:539–553CrossRefGoogle Scholar
  42. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158Google Scholar
  43. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white-rot fungus. Science 228:1434–1436CrossRefGoogle Scholar
  44. Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphtholsynthesis and chlorinated ethene degradation. J Bacteriol 184:344–349CrossRefGoogle Scholar
  45. Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102—the oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268:3117–3125CrossRefGoogle Scholar
  46. Cébron A, Beguiristain T, Bongoua-Devisme J, Denonfoux J, Faure P, Lorgeoux C, Ouvrard S, Parisot N, Peyret P, Leyval C (2015) Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ Sci Pollut Res 22(18):13724–13738CrossRefGoogle Scholar
  47. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. In: Microorganisms to combat pollution, Springer, Dordrecht, pp 227–244CrossRefGoogle Scholar
  48. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Microbiol Biotechnol 19:324–333CrossRefGoogle Scholar
  49. Cerniglia CE, Gibson DT (1979) Oxidation of benzo [a] pyrene by the filamentous fungus Cunninghamella elegans. J Biol Chem 254:12174–12180Google Scholar
  50. Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47:119–124Google Scholar
  51. Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88:50–58CrossRefGoogle Scholar
  52. Cerniglia CE, Mahaffey W, Gibson DT (1980a) Fungal oxidation of benzo [a] pyrene: formation of (−)-trans-7, 8-dihydroxy-7,8-dihydrobenzo [a] pyrene by Cunninghamella elegans. Biochem Biophys Res Commun 94:226–232CrossRefGoogle Scholar
  53. Cerniglia CE, Dodge RH, Gibson DT (1980b) Studies on the fungal oxidation of polycyclic aromatic hydrocarbons. Bot Mar 23:121–124CrossRefGoogle Scholar
  54. Cerniglia CE, Kelly DW, Freeman JP, Miller DW (1986) Microbial metabolism of pyrene. Chem Biol Interact 57:203–216CrossRefGoogle Scholar
  55. Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446CrossRefGoogle Scholar
  56. Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25:1772–1779CrossRefGoogle Scholar
  57. Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–30.  https://doi.org/10.1201/b18218-2 CrossRefGoogle Scholar
  58. Chung KH, Lee JH, Ro KS (2000) Composting of kerosene-contaminated soil: fate of kerosene. J Environ Sci Health A 35:1183–1194CrossRefGoogle Scholar
  59. Civilini M (1994) Fate of creosote compounds during composting. Microbiol Eur 2:16–24Google Scholar
  60. Coral G, Karagoz S (2005) Isolation and characterization of phenanthrene-degrading bacteria from a petroleum refinery soil. Ann Microbiol 55:255–259Google Scholar
  61. Cousins IT, Jones KC (1998) Air–soil exchange of semi-volatile organic compounds (SOCs) in the UK. Environ Pollut 102:105–118CrossRefGoogle Scholar
  62. Crawford SL, Johnson GE, Goetz FE (1993) The potential for bioremediation of soils containing PAHs by composting. Compost Sci Util 1:41–47CrossRefGoogle Scholar
  63. Cutright TJ (1995) Polycyclic aromatic hydrocarbon biodegradation and kinetics using Cunninghamella echinulata var. elegans. Int Biodeterior Biodegrad 35:397–408CrossRefGoogle Scholar
  64. Darmawan R, Nakata H, Ohta H, Niidome T, Takikawa K, Morimura S (2015) Isolation and evaluation of PAH degrading bacteria. J Bioremed Biodegr 6:3.  https://doi.org/10.4172/2155-6199.1000283 CrossRefGoogle Scholar
  65. Diaz M, Mora V, Pedrozo F, Nichela D, Baffico G (2014) Evaluation of native acidophilic algae species as potential indicators of polycyclic aromatic hydrocarbon (PAH) soil contamination. J Appl Phycol 27:321–325CrossRefGoogle Scholar
  66. Dipple A, Bigger CAH (1991) Mechanism of action of food-associated polycyclic aromatic hydrocarbon carcinogens. Mutat Res 259:263–276CrossRefGoogle Scholar
  67. Edwards NT (1983) Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment: a review. J Environ Qual 12:427–441CrossRefGoogle Scholar
  68. Elias M, Wood A, Hashim Z, Siong W, Hamzah M, Rahman S, Salim N, Talib A (2007) Polycyclic aromatic hydrocarbons (PAH) contamination in the sediments of east coast peninsular Malaysia. Malays J Anal Sci 11:70–75Google Scholar
  69. Elisabet Aranda RU (2009) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281CrossRefGoogle Scholar
  70. El-Sheekh MM, Ghareib MM, Abou-El-Souod GW (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegr 3:133CrossRefGoogle Scholar
  71. England PA, Harford-Cross CF, Stevenson JA, Rouch DA, Wong LL (1998) The oxidation of naphthalene and pyrene by cytochrome P450(cam). FEBS Lett 424:271–274CrossRefGoogle Scholar
  72. Farhadian A, Jinap S, Abasand F, Sakar Z (2010) Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control 21:606–610CrossRefGoogle Scholar
  73. Farnet AM, Criquet S, Tagger S, Gil G, Petit JL (2000) Purification, partial characterization, and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17. Can J Microbiol 46:189–194CrossRefGoogle Scholar
  74. Ferreira L, Rosales E, Sanromán MA, Pazos M (2015) Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by Pseudomonas stutzeri CECT 930 immobilized in hydrogel matrices. J Chem Technol Biotechnol 90:500–506CrossRefGoogle Scholar
  75. Fetzer JC (2000) The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbon, 2nd edn. Wiley Publishers, New York, pp 27–29Google Scholar
  76. Field JA, De Jong E, Costa GF, De Bont JA (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58(7):2219–2226Google Scholar
  77. Freeman DJ, Cattell CR (1990) Wood burning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 24:1581–1585CrossRefGoogle Scholar
  78. Gafarov AB, Panov AV, Filonov AE, Boronin AM (2006) Change in the composition of a bacterial association degrading aromatic compounds during oil sludge detoxification in a continuous-flow microbial reactor. Appl Biochem Microbiol 42:160–165CrossRefGoogle Scholar
  79. Genthner BRS, Townsend GT, Lantz SE, Mueller JG (1997) Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions. Arch Environ Contam Toxicol 32:99–105CrossRefGoogle Scholar
  80. Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494CrossRefGoogle Scholar
  81. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review. Front Microbiol 7:1369.  https://doi.org/10.3389/fmicb.2016.01369 CrossRefGoogle Scholar
  82. Gibson DT, Koch JR, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2661CrossRefGoogle Scholar
  83. Gibson DT, Mahadevan V, Jerina RM, Yagi H, Yeh HJC (1975) Oxidation of the carcinogens benzo[a ]pyrene and benzo[a ]anthracene to dihydrodiols by a bacterium. Science 189:295–297CrossRefGoogle Scholar
  84. Gordon L, Dobson AD (2001) Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation 12(6):393–400CrossRefGoogle Scholar
  85. Grotenhuis T, Field J, Wasseveld R, Rulkens W (1999) Biodegradation of polyaromatic hydrocarbons (PAH) in polluted soil by the white-rot fungus Bjerkandera. J Chem Technol Biotechnol 71:359–360CrossRefGoogle Scholar
  86. Guerin TF (2000) Long-term performance of a land treatment facility for the bioremediation of non-volatile oily wastes. Resour Conserv Recycl 28:105–120CrossRefGoogle Scholar
  87. Guillén F, Gómez-Toribio V, Martínez MJ, Martínez AT (2000) Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch Biochem Biophys 382:142–147CrossRefGoogle Scholar
  88. Gupta PK (2008) Molecular biology and genetic engineering. Rastogi Publications, New Delhi, p 614Google Scholar
  89. Gusmão CAB, Rufino RD, Sarubbo LA (2010) Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World J Microbiol Biotechnol 26:1683–1692CrossRefGoogle Scholar
  90. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotech Bioch 67:225–243CrossRefGoogle Scholar
  91. Hadibarata T, Kristanti RA (2014) Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene. Fungal Biol 118:222–227CrossRefGoogle Scholar
  92. Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J Hazard Mater 164:911–917CrossRefGoogle Scholar
  93. Haemmerli SD, Leisola MS, Sanglard D, Fiechter A (1986) Oxidation of benzo (a) pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem 261:6900–6903Google Scholar
  94. Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phyto extraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275CrossRefGoogle Scholar
  95. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[a]dioxins by Phunerochucre chrysosporium Iigninase. J Biol Chem 26(1):16948–16952Google Scholar
  96. Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1838Google Scholar
  97. Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–274CrossRefGoogle Scholar
  98. Harford-Cross CF, Carmichael AB, Allan FK, England PA, Rouch DA, Wong LL (2000) Protein engineering of cytochrome P450cam (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng 13:121–128CrossRefGoogle Scholar
  99. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15CrossRefGoogle Scholar
  100. Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res Int 9:29–47CrossRefGoogle Scholar
  101. Heitkamp MA, Franklin W, Cerniglia CE (1988a) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene degrading bacterium. Appl Environ Microbiol 54:2549–2555Google Scholar
  102. Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988b) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol:2556–2565Google Scholar
  103. Herbes SE, Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol 35:306–316Google Scholar
  104. Hofrichter M, Scheibner K, Schneega I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399–404Google Scholar
  105. Hofrichter M, Scheibner K, Bublitz F, Schneegaß I, Ziegenhagen D, Martens R, Fritsche W (1999) Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 53(2):161–166CrossRefGoogle Scholar
  106. International Agency of Research on Cancer (IARC) (1983) Polynuclear aromatic compounds, IARC monographs on the evaluation of carcinogenic risks to humans. IARC, LyonGoogle Scholar
  107. International Society for Polycyclic Aromatic Compounds (2003) PAH structure/properties. www.ispac.org
  108. Isiodu GG, Stanley OH, Victor E, Okerentugba PO (2016) Role of plasmid-borne genes in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) by consortium of aerobic heterotrophic bacteria. J Pet Environ Biotechnol 7:264.  https://doi.org/10.4172/2157-7463.1000264 CrossRefGoogle Scholar
  109. Jacob J, Karcher W, Beiliardo JJ, Wagstaffe PJ (1986) Polycyclic aromatic hydrocarbons of environmental and occupational importance. Fresenius Z Anal Chem 323:1–10CrossRefGoogle Scholar
  110. Jacques RJS, Santos EC, Bento FM, Peralba MCR, Selbach PA, Sa ELS, Camargo FAO (2005) Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int Biodeterior Biodegradation 56:143–150CrossRefGoogle Scholar
  111. James TY, O’Donnell K (2004) Zygomycota, microscopic ‘pin’ or ‘sugar’ molds. Available at: http://tolweb.org/Zygomycota/20518/2004.12.21 (Version21 December 2004), part of The Tree of Life Web Project, http://tolweb.org
  112. Jobson AM, Cook FD, Westlake DWS (1974) Effect of amendments on the microbial utilization of oil applied to soil. Appl Microbiol Biotechnol 27:166–171Google Scholar
  113. Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528CrossRefGoogle Scholar
  114. Jones KC (1991) Contaminant trends in soils and crops. Environ Pollut 69:311–325CrossRefGoogle Scholar
  115. Jørgensen KS, Puustinen J, Suortti AM (2000) Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ Pollut 107:245–254CrossRefGoogle Scholar
  116. Jové P, Olivella MÀ, Camarero S, Caixach J, Planas C, Cano L, De Las Heras FX (2016) Fungal biodegradation of anthracene-polluted cork: a comparative study. J Environ Sci Health A 51:70–77CrossRefGoogle Scholar
  117. Joyce JF, Sato C, Cardenas R, Surampalli RY (1998) Composting of polycyclic aromatic hydrocarbons in simulated municipal solid waste. Water Environ Res 70:356–361CrossRefGoogle Scholar
  118. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88CrossRefGoogle Scholar
  119. Kafilzadeh F, Pour FP (2012) Degradation of naphthalene, phenanthrene and pyrene by Pseudomonas sp. and Corynebacterium sp. in the landfills. Int J Bios 2(9):77–84Google Scholar
  120. Kafilzadeh F, Sahragard P, Jamali H, Tahery Y (2011) Isolation and identification of hydrocarbons degrading bacteria in soil around Shiraz Refinery. Afr J Microbiol Res 4(19):3084–3089Google Scholar
  121. Kafilzadeh F, Hoshyaripour F, Tahery Y, Azad HN (2012) Bioremediation of pyrene by isolated bacterial strains from the soil of the landfills in Shiraz, Iran. Ann Biol Res 3(1):486–494Google Scholar
  122. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067CrossRefGoogle Scholar
  123. Kastner M, Lotter S, Heerenklage J, Breuer-Jammali M, Stegmann R, Mahro B (1995) Fate of 14C-labeled anthracene and hexadecane in compost-manure soil. Appl Microbiol Biotechnol 43:1128–1135CrossRefGoogle Scholar
  124. Kastner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64:359–362Google Scholar
  125. Kastner M, Streibich S, Beyrer M, Richnow HH, Fritsche W (1999) Formation of bound residues during microbial degradation of [14C]anthracene in soil. Appl Environ Microbiol 65(5):1834–1842Google Scholar
  126. Keith LH, Telliard WA (1979) ES & T special report—priority pollutants: I-a perspective view. Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  127. Khan AA, Wang R-F, Cao W-W, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585CrossRefGoogle Scholar
  128. Khanna P, Goyal D, Khanna S (2012) Characterization of pyrene utilizing bacillus spp. from crude oil contaminated soil. Braz J Microbiol 43(2):606–617CrossRefGoogle Scholar
  129. Kim SJ, Jones RC, Cha CJ, Kweon O, Edmondson RD, Cerniglia CE (2004) Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 4(12):3899–3908CrossRefGoogle Scholar
  130. Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR1. Appl Microbiol Biotechnol 67:275–285CrossRefGoogle Scholar
  131. Kingsley MT, Fredrickson JK, Metting FB, Seidler RJ (1994) Environmental restoration using plant-microbe bioaugmentation. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polyaromatic hydrocarbon compounds. Lewis Publishers, Boca Raton, pp 287–292Google Scholar
  132. Kirchmann H, Ewnetu W (1998) Biodegradation of petroleum-based oil wastes through composting. Biodegradation 9:151–156CrossRefGoogle Scholar
  133. Kotterman MJ, Vis EH, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl Environ Microbiol 64:2853–2858Google Scholar
  134. Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod JL (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37(3):523–530CrossRefGoogle Scholar
  135. Kuiper EL, Lagendijk GV, Lugtenberg B (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant Microbiol Int 17:6–15CrossRefGoogle Scholar
  136. Kumar S, Upadhyay SK, Kumari B, Tiwari S, Singh SN, Singh PK (2011) In vitro degradation of fluoranthene by bacteria isolated from petroleum sludge. Bioresour Technol 102:3709–3715CrossRefGoogle Scholar
  137. Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546CrossRefGoogle Scholar
  138. Lee K, Tremblay GH, Gauthier J, Cobanli SE, Griffin M (1997) Bioaugmentation and biostimulation: a paradox between laboratory and field results. Proceedings of 1997 international oil spill conference, American Petroleum Institute, Washington, DC, pp 697–705CrossRefGoogle Scholar
  139. Lee H, Jang Y, Choi YS, Kim MJ, Lee J, Lee H, Hong JH, Lee YM, Kim GH, Kim JJ (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 97:56–62CrossRefGoogle Scholar
  140. Lei AP, Wong YS, Tam NFY (2000) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201CrossRefGoogle Scholar
  141. Lei AP, Hu ZL, Wong YS, Tam NFY (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98:273–280CrossRefGoogle Scholar
  142. Li QS, Ogawa J, Schmid RD, Shimizu S (2001) Engineering cytochrome P450BM-3 for oxidation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5735–5739CrossRefGoogle Scholar
  143. Li P, Li H, Stagnitti F, Wang X, Zhang H, Gong Z, Liu W, Xiong X, Li L, Austin C, Barry DA (2005) Biodegradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp. Bull Environ Contam Toxicol 75:443–450CrossRefGoogle Scholar
  144. Li X, Wang Y, Wu S, Qiu L, Gu L, Li J, Zhang B, Zhong W (2014) Pecularities of metabolism of anthracene and pyrene by laccase producing fungus Pycnoporus sanguineus H1. Biotechnol Appl Biochem 61:549–554CrossRefGoogle Scholar
  145. Liang Y, Sorensen DL, McLean JE, Sims RC (2008) Pyrene fate affected by humic acid amendment in soil slurry systems. J Biol Eng 2:11CrossRefGoogle Scholar
  146. Lim LH, Harrison RM, Harrad S (1999) The contribution of traffic to atmospheric concentrations of polycyclic aromatic hydrocarbons. Environ Sci Technol 33:3538–3542CrossRefGoogle Scholar
  147. Lugtenberg B, van der Bij A, Bloemberg G, Woeng TCA, Dekkers L, Kravchenko L, Mulders I, Phoelich C, Simons M, Tikhonovich I, de Weger L, Wijffelman C (1997) Towards the molecular basis of plant root colonization by Pseudomonas bacteria. Pseudomonas’97, VI international congress on pseudomonas: molecular biology and biotechnology, Madrid, 1997Google Scholar
  148. Luna JM, Rufino RD, Sarubbo LA, Rodrigues LRM, Teixeira JAC, Campos-Takaki GM (2011) Evaluation antimicrobial and antiadhesive properties of the biosurfactant lunasan produced by Candida sphaerica UCP 0995. Curr Microbiol 62:1527–1534CrossRefGoogle Scholar
  149. Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B Biointerfaces 102:202–209CrossRefGoogle Scholar
  150. Lundstedt S, Haglund P, Oberg L (2003) Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil. Environ Toxicol Chem 22:1413–1420CrossRefGoogle Scholar
  151. Luo L, Wang P, Lin L, Luan T, Ke L, Tam NFY (2014) Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem 49:1723–1732CrossRefGoogle Scholar
  152. Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Vol. II. Polynuclear aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans. Lewis Publishers, Boca RatonGoogle Scholar
  153. Madsen T, Kristensen P (1997) Effects of bacterial inoculation and nonionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 16:631–637CrossRefGoogle Scholar
  154. Manilal VB, Alexander M (1991) Factors affecting the microbial degradation of phenanthrene in soil. Appl Microbiol Biotechnol 35:401–405CrossRefGoogle Scholar
  155. Manilla-Pérez E, Lange AB, Luftmann H, Robenek H, Steinbüchel A (2011) Neutral lipid production in Alcanivorax borkumensis SK2 and other marine hydrocarbonoclastic bacteria. Eur J Lipid Sci Technol 113:8–17CrossRefGoogle Scholar
  156. Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegrad 70:141–147CrossRefGoogle Scholar
  157. McFarland MJ, Qiu XJ (1995) Removal of benzo (a) pyrene in soil composting systems amended with the white rot fungus Phanerochaete chrysosporium. J Hazard Mater 42:61–70CrossRefGoogle Scholar
  158. McNally DL, Mihelcic JR, Lueking DR (1999) Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere 38:1313–1321CrossRefGoogle Scholar
  159. Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S (2015) Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl Aromat Compd 35:120–128CrossRefGoogle Scholar
  160. Miya RK, Firestone MK (2000) Phenanthrene biodegradation in soil by slender oar root exudates and root debris. J Environ Qual 30:1911–1918CrossRefGoogle Scholar
  161. Mumford JL, Chapman RS, Narris DB, He XZ, Cao SR, Xian YL, Li XM (1989) Indoor air exposure to coal and wood combustion emissions associated with a high lung cancer in Xuan Wei. China Environ Int 15:315–320CrossRefGoogle Scholar
  162. Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel contaminated soil with composting. Environ Pollut 119:23–31CrossRefGoogle Scholar
  163. Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992a) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain. JCM Appl Environ Microbiol 58:1360–1363Google Scholar
  164. Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58:1351–1359Google Scholar
  165. Nnamchi C, Obeta J, Ezeogu L (2006) Isolation and characterization of some polycyclic aromatic hydrocarbon degrading bacteria from Nsukka soils in Nigeria. Int J Environ Sci Technol 3:181–190CrossRefGoogle Scholar
  166. Nollet LML (2006) Chromatographic analysis of the environment, Series: Chromatographic science series, vol 93, 3rd edn. CRC Press, Boca Raton, p 1320Google Scholar
  167. Novotný Č, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551CrossRefGoogle Scholar
  168. Okai M, Kihara I, Yokoyama Y, Ishida M, Urano N (2015) Isolation and characterization of benzo [a] pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiol Lett 362:fnv143CrossRefGoogle Scholar
  169. Park KS, Sims RC, Dupont RR, Doucette WJ, Matthews JE (1990) Fate of PAH compounds in two soil types. Influence of volatilization, abiotic loss and biological activity. Environ Toxicol Chem 9:187–195CrossRefGoogle Scholar
  170. Pilon-Smits E (2005) Phytoremediation. Ann Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  171. Ping L, Zhang C, Zhu Y, Wu M, Hu X, Li Z, Zhao H (2011) Biodegrading of pyrene by a newly isolated pseudomonas putida PL2. Biotechnol Bioprocess E 16:1000.  https://doi.org/10.1007/s12257-010-0435-y CrossRefGoogle Scholar
  172. Pirôllo MP, Mariano AP, Lovaglio RB, Costa SG, Walter V, Hausmann R, Contiero J (2008) Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. J Appl Microbiol 105:1484–1490CrossRefGoogle Scholar
  173. Piskonen R, Itävaara M (2004) Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation. Appl Microbiol Biotechnol 65:627–634CrossRefGoogle Scholar
  174. Pitt R, Field R, Lalor M, Brown M (1995) Urban storm water toxic pollutants: assessment, sources and treatability. Water Environ Res 67:260–275CrossRefGoogle Scholar
  175. Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1990) Fungal transformation of fluoranthene. Appl Environ Microbiol 56:2974–2983Google Scholar
  176. Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1992a) Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl Environ Microbiol 58:3654–3659Google Scholar
  177. Pothuluri JV, Heflich RH, Fu PP, Cerniglia CE (1992b) Fungal metabolism and detoxification of fluoranthene. Appl Environ Microbiol 58:937–941Google Scholar
  178. Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1993) Biotransformation of fluorene by the fungus Cunninghamella elegans. Appl Environ Microbiol 59:1977–1980Google Scholar
  179. Pothuluri JV, Selby A, Evans FE, Freeman JP, Cerniglia CE (1995) Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunninghamella elegans. Can J Bot 73:1025–1033CrossRefGoogle Scholar
  180. Pothuluri JV, Evans FE, Heinze TM, Cerniglia CE (1996) Formation of sulfate and glucoside conjugates of benzo[e]pyrene by Cunninghamella elegans. Appl Microbiol Biotechnol 45:677–683CrossRefGoogle Scholar
  181. Pysh ES, Yang NC (1963) Polarographic oxidation potentials of aromatic compounds. J Am Chem Soc 85:2124–2130CrossRefGoogle Scholar
  182. Qiu XJ, McFarland MJ (1991) Bound residue formation in PAH contaminated soil composting using Phanerochaete chrysosporium. Hazard Waste Hazard Mater 8:115–126CrossRefGoogle Scholar
  183. Qiu X, Shah SI, Kendall EW, Sorensen DL, Sim RC, Engelke MC (1994) Grass enhanced bioremediation for clay soils contaminated with polynuclear aromatic hydrocarbons. In: Anderson TA, Coates JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 142–157CrossRefGoogle Scholar
  184. Rahman KS, Rahman TP, Banat IM (2002) Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol 42:284–291CrossRefGoogle Scholar
  185. Rehmann K, Hertkorn N, Kettrup AA (2001) Fluoranthene metabolism in Mycobacterium sp. strain KR20 identity of pathway intermediates during degradation and growth. Microbiology 147(10):2783–2794CrossRefGoogle Scholar
  186. Ripps S, Nivens DE, Ahn Y, Werner C, Jarrel J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853CrossRefGoogle Scholar
  187. Sack U, Günther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol 33:269–277CrossRefGoogle Scholar
  188. Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63(10):3919–3925Google Scholar
  189. Safonova E, Kvitko K, Kuschk P, Möder M, Reisser W (2005) Biodegradation of phenanthrene by the green alga Scenedesmus obliquus ES-55. Eng Life Sci 5:234–239CrossRefGoogle Scholar
  190. Salicis F, Krivobok S, Jack M, Benoit-Guyod JL (1999) Biodegradation of fluoranthene by soil fungi. Chemosphere 38(13):3031–3039CrossRefGoogle Scholar
  191. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  192. Sanglard D, Leisola MS, Fiechter A (1986) Role of extracellular ligninases in biodegradation of benzo (a) pyrene by Phanerochaete chrysosporium. Enzym Microb Technol 8:209–212CrossRefGoogle Scholar
  193. Sasek V, Bhatt M, Cajthaml T, Malachova K, Lednicka D (2003) Compost- mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch Environ Contam Toxicol 44:336–342CrossRefGoogle Scholar
  194. Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 217–247.  https://doi.org/10.1201/b19243-10 CrossRefGoogle Scholar
  195. Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 23–56.  https://doi.org/10.1201/9781315173351-3 CrossRefGoogle Scholar
  196. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation process. Curr Opin Biotechnol 11:286–289CrossRefGoogle Scholar
  197. Sayler GS, Cox CD, Burlager RS, Nivens DE, Werner C, Ahn Y, Matrubutham U (1999) Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control. In: Fass R, Flashner Y, Reuveny S (eds) Novel approaches for bioremediation of organic pollution. Kluwer Academic Plenum Publishers, New York, pp 241–254CrossRefGoogle Scholar
  198. Schell MA (1983) Cloning and expression in E. coli of naphthalene degrading genes from plasmid NAH7. J Bacteriol 153:822–829Google Scholar
  199. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene and benzo[a ]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gas station site. Appl Environ Microbiol 62:13–19Google Scholar
  200. Sette LD, Simioni KCM, Vasconcellos SP, Dussan LJ, Neto EVS, Oliveira VM (2007) Analysis of composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie Leeuwenhoek 91:253–266CrossRefGoogle Scholar
  201. Silva EJ, Rocha e Silva NMP, Rufino RD, Luna JM, Silva RO, Sarubbo LA (2014) Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids Surf B Biointerfaces 117:36–41CrossRefGoogle Scholar
  202. Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in pseudomonas putida strains G7 and NCIB 9816-4. Gene 127(1):31–37CrossRefGoogle Scholar
  203. Simonsick WJ, Hites RA (1986) Characterization of high molecular weight polycyclic aromatic hydrocarbons by charge exchange chemical ionization mass spectrometry. Anal Chem 58:2114–2121CrossRefGoogle Scholar
  204. Sims JL, Sims RC, Matthews JE (1990) Approach to bioremediation of contaminated soil. Hazard Waste Hazard Mater 7:117–149CrossRefGoogle Scholar
  205. Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135CrossRefGoogle Scholar
  206. Soberón-Chávez G, Maier RM (2010) Biosurfactants: a general overview. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications. Springer, Münster, pp 1–11Google Scholar
  207. Sobisch T, He ßH, Niebelschutz H, Schmidt U (2000) Effect of additives on biodegradation of PAH in soils. Colloids Surf A Physicochem Eng Asp 162(2000):1–14CrossRefGoogle Scholar
  208. Sobrinho HB, Luna, JM, Rufino RD, Porto ALF, Sarubbo LA (2013) Biosurfactants: classification, properties and environmental applications. In: Recent developments in biotechnology, 1st edn, vol 11. Studium Press LLC, Houston, pp 1–29Google Scholar
  209. Souza EC, Vessoni-Penna TC, Souza Oliveira RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeterior Biodegrad 89:88–94CrossRefGoogle Scholar
  210. Steiber M, Bockle K, Werner P, Frimmel FH (eds) (1990) Biodegradation of polycyclic hydrocarbons (PAH) in the subsurface. Kluwer Academic Publisher, DordrechtGoogle Scholar
  211. Stevenson JA, Westlake ACG, Whittock C, Wong LL (1996) The catalytic oxidation of linear and branched alkanes by cytochrome P450cam. J Am Chem Soc 118:12846–12847CrossRefGoogle Scholar
  212. Straube WL, Nestler CC, Hansen LD, Ringleberg D, Pritchard PJ, Jonesmeehan J (2003) Remediation of polyaromatic hydrocarbons (PAHs) through land farming with biostimulation and bioaugmentation. Acta Biotechnol 2(3):179–196CrossRefGoogle Scholar
  213. Sun GD, Xu Y, Liu Y, Liu ZP (2014) Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil. Appl Microbiol Biotechnol 98(24):10243–10253CrossRefGoogle Scholar
  214. Tam NFY, Chan MN, Wong YS (2010) Removal and biodegradation of polycyclic aromatic hydrocarbons by immobilized microalgal beads. Trans Ecol Environ 140:391–402CrossRefGoogle Scholar
  215. Tao XQ, Lu GN, Dang Z, Xang C, Yi X (2007) A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem 42:401–408CrossRefGoogle Scholar
  216. Thiyagarajan A, Saravanakumar K, Kaviyarasan V (2008) Optimization of extracellular peroxidase production from Coprinus sp. Indian J Sci Technol 1:1–5Google Scholar
  217. Tondo DW, Leopolino EC, Souza BS, Micke GA, Costa ACO, Fielder HD, Bunton CA, Nome F (2010) Synthesis of a new zwitterionic surfactant containing an imidazolium ring: evaluating the chameleon-like behavior of zwitterionic micelles. Langmuir 26(20):15754–15760CrossRefGoogle Scholar
  218. Tsibart AS, Gennadiev AN (2012) Polycyclic Aromatic Hydrocarbons in Soils: Sources, Behavior, and Indication Significance (A Review). Eura Soil Sci 46(7):728–741CrossRefGoogle Scholar
  219. Tsibart AS, Gennadiev AN (2013) Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review). Eurasian Soil Sci 46:728–741CrossRefGoogle Scholar
  220. United States Environmental Protection Agency: Integrated Risk Information System USEPA (2011) Environmental Protection Agency. Available from: http://www.epa.gov/IRIS
  221. USEPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. Fed Regist 64:25039–25040Google Scholar
  222. Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80CrossRefGoogle Scholar
  223. Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King DW, Holder E (1996) Bioremediation of experimental oil spillon the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775CrossRefGoogle Scholar
  224. Vinas M, Sabate J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018CrossRefGoogle Scholar
  225. Vyas BRM, Bakowski S, Sasek V, Matucha M (1994) Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol 14:65–70CrossRefGoogle Scholar
  226. Wagrowski DM, Hites RA (1997) Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ Sci Technol 31:279–282CrossRefGoogle Scholar
  227. Wang C, Sun H, Liu H, Wang B (2014) Biodegradation of pyrene by Phanerochaete chrysosporium and enzyme activities in soils: effect of SOM, sterilization and aging. J Environ Sci 26:1135–1144CrossRefGoogle Scholar
  228. Wellman DE, Ulery AL, Barcellona MP, DuerrAuster S (2001) Animal waste-enhanced degradation of hydrocarbon-contaminated soil. Soil Sediment Contam 10(6):511–523CrossRefGoogle Scholar
  229. WGPAH (2001) Working group on polycyclic aromatic hydrocarbons (WGPAH) Ambient air pollution by polycyclic aromatic hydrocarbons: position paper AnnexesGoogle Scholar
  230. Wick A, Haus N, Sukkariyah B, Haering K, Daniels W (2011) Remediation of PAH-contaminated soils and sediments: a literature review. Virginia Polytechnic Institute and State University Department of Crop and Soil Environmental Sciences Blacksburg, VA 24061 Online source: http://landrehab.org/
  231. Widada J, Nojiri H, Omori T (2001) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59Google Scholar
  232. Wild SR, Hard SJ, Jones KC (1994) The influence of sewage sludge applications to agricultural land on human exposure to polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs). Environ Pollut 83:357–369CrossRefGoogle Scholar
  233. Williams PA, Sayers JR (1994) The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation 5(3–4):195–217CrossRefGoogle Scholar
  234. Wong JWC, Wan CK, Fang M (2002) Pig manure as a co-composting material for biodegradation of PAH-contaminated soil. Environ Technol 23:15–26CrossRefGoogle Scholar
  235. Wong JWC, Fang M, Zhao Z, Xing B (2004) Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. J Environ Qual 33:2015–2025CrossRefGoogle Scholar
  236. Young LY, Phelps CD (2005) Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation. Environ Health Perspect 113(1):62–67CrossRefGoogle Scholar
  237. Young D, Rice J, Martin R, Lindquist E, Lipzen A, Grigoriev I, Hibbett D (2015) Degradation of bunker C fuel oil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. PLoS One 10:e0130381CrossRefGoogle Scholar
  238. Yu CL, Parales RE, Gibson DT (2001) Multiple mutations at the active site of naphthalene dioxygenase affect regioselectivity and enantioselectivity. J Ind Microbiol Biotechnol 27:94–103CrossRefGoogle Scholar
  239. Yucheng W, Ying T, Zhengao L, Xuewei L, Luo Y (2008) Potential role of polycyclic aromatic hydrocarbons PAHs oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40(789):796Google Scholar
  240. Zafra G, Absalón AE, Cortés-Espinosa DV (2015a) Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz J Microbiol 46:937–941CrossRefGoogle Scholar
  241. Zafra G, Moreno-Montaño A, Absalón ÁE, Cortés-Espinos DV (2015b) Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ Sci Pollut Res 22:1034–1042CrossRefGoogle Scholar
  242. Zein MM, Pinto PX, Garcia-Blanco S, Suidan MT, Venosa AD (2006) Treatment of groundwater contaminated with PAHs, gasoline hydrocarbons, and methyl tert-butyl ether in a laboratory biomass-retaining bioreactor. Biodegrad 17:57–69CrossRefGoogle Scholar
  243. Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P (2011) Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol 102:4111–4116CrossRefGoogle Scholar
  244. Zhang S, Ning Y, Zhang X, Zhao Y, Yang X, Wu K, Yang S, La G, Sun X, Li X (2015) Contrasting characteristics of anthracene and pyrene degradation by wood rot fungus Pycnoporus sanguineus H1. Int Biodeterior Biodegrad 105:228–232CrossRefGoogle Scholar
  245. Zhao HP, Wu QS, Wang L, Zhao XT, Gao HW (2009) Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in shanghai China. J Hazard Mater 164:863–869CrossRefGoogle Scholar
  246. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Dhanya M. S. 
    • 1
  • Arun Kalia
    • 1
  1. 1.Department of Environmental Sciences and Technology, School of Environment and Earth SciencesCentral University of PunjabBathindaIndia

Personalised recommendations