Big Data-Based Image Retrieval Model Using Shape Adaptive Discreet Curvelet Transformation

  • J. Santhana KrishnanEmail author
  • P. SivaKumar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 750)


Digital India program will help in agriculture field in various ways, including a weather forecast to agriculture consultation. To find all the causing symptoms of diseased leaf, the knowledge-based Android app is proposed to refer the disease of a leaf. The user can directly capture the disease leaf image from their smartphone and upload that image into the app, and they will get all the causes and symptoms of a particular disease. Moreover, users can get information in the form of text and audio in their proffered language. This system will accept the query based on images and text format which is very useful to the farmers. In this proposed work, texture-based feature extraction using Shape Adaptive Discreet Curvelet Transform (SADCT) is developed using big data computing framework.


CBIR––content-based image retrieval SADCT––shape adaptive discreet curvelet transform HDFS––Hadoop distributed file system 


  1. 1.
    Rajkumar, K., Sudheer, D.: A review of visual information retrieval on massive image data using hadoop. Int. J. Control Theor. Appl. 9, 425–430 (2016)Google Scholar
  2. 2.
    Bravo, C., Moshou, D., West, J., McCartney, A., Ramon, H.: Early disease detection in wheat fields using spectral reflectance. Biosyst. Eng. 84(2), 137–145 (2003)Google Scholar
  3. 3.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Recognition of images in large databases using color and texture. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1026–1028 (2002)CrossRefGoogle Scholar
  4. 4.
    Miller, S.A., Beed, F.D., Harmon, C.L.: Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009)Google Scholar
  5. 5.
    Klatt, B., Kleinhenz, B., Kuhn, C., Bauckhage, C., Neumann, M., Kersting, K., Oerke, E.C., Hallau, L., Mahlein, A.K., Steiner-Stenzel, U., Röhrig, M.: SmartDDS-Plant disease setection via smartphone. EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation”, Turin, Italy, 24–27 June (2013)Google Scholar
  6. 6.
    Prince, G., Clarkson, J.P., Rajpoot, N.M.: Automatic detection of diseased tomato plants using thermal and stereo visible light images. PloS One, 10(4), e0123262 (2015)Google Scholar
  7. 7.
    Majumdar, J., Naraseeyappa, S., Ankalaki, S.: Analysis of agriculture data using data mining techniques: application of big data. J. Big Data, Springer (2017)Google Scholar
  8. 8.
    Rouached, H., Rhee, S.Y.: System-level understanding of plant mineral nutrition in the big data era. Curr. Opin. Syst. Biol. 4, 71–77 (2017)CrossRefGoogle Scholar
  9. 9.
    Xie, H., He, Y., Xie, X.: Exploring the factors influencing ecological land change for China’s Beijinge-Tianjine-Hebei Region using big data. J. Cleaner Prod. 142, 677e687 (2017)Google Scholar
  10. 10.
    Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X.: A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143, 23–37 (2017)Google Scholar
  11. 11.
    Manjunath, B.S.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)CrossRefGoogle Scholar
  12. 12.
    Iakovidis, D.K., Pelekis, N., Kotsifakos, E.E., Kopanakis, I., Karanikas, H., Theodoridis, Y.: A pattern similarity scheme for medical image retrieval. IEEE Trans. Inf. Technol. Biomed. 13(4), 442–450 (2009)CrossRefGoogle Scholar
  13. 13.
    Rajakumar, K., Revathi, S.: An efficient face recognition system using curvelet with PCA. ARPN J. Eng. Appl. Sci. 10, 4915–4920 (2015)Google Scholar
  14. 14.
    Rajakumar, K., Muttan, S.: Texture-based MRI image retrieval using curvelet with statistical similarity matching. Int. J. Comput. Sci. Issues 10, 483–487 (2013)Google Scholar
  15. 15.
    Manipoonchelvi, P., Muneeswaran, K.: Significant region-based image retrieval using curvelet transform. In: IEEE Conference Publications, pp. 291–294 (2011)Google Scholar
  16. 16.
    Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans. Image Process. 21(4), 1613–1623 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rajakumar, K., Muttan, S.: MRI image retrieval using wavelet with mahalanobis distance measurement. J. Electr. Eng. Technol. 8, 1188–1193 (2013)Google Scholar
  18. 18.
    Zhang, L., Wang, L., Lin, W.: Generalized biased discriminant analysis for content-based image retrieval systems. IEEE Trans. Man Cybern. Part B Cybern. 42(1), 282–290 (2012)Google Scholar
  19. 19.
    Zajić, G., Kojić, N., Reljin, B.: Searching image database based on content. In: IEEE Conference Publications, pp. 1203–1206 (2011)Google Scholar
  20. 20.
    Akakin, H.Ç., Gürcan, M.N.: Content-based microscopic image retrieval system for multi-image queries. IEEE Trans. Inf. Technol. Biomed. 16(4), 758–769 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Gong, H., Feng, D., Zhang, Y.: An adaptive method of speckle reduction and feature enhancement for SAR images based on curvelet transform and particle swarm optimization. IEEE Trans. Geosci. Remote Sens. 49(8), 3105–3116 (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, S., Cai, W., Wen, L., Eberl, S., Fulham, M.J., Feng, D.: Localized functional neuroimaging retrieval using 3D discrete curvelet transform. In: IEEE Conference Publications, pp. 1877–1880 (2011)Google Scholar
  23. 23.
    Minakshi, Banerjee, Sanghamitra, Yopadhyay, Sankar, K.P.: Rough Sets and Intelligent Systems, vol. 2, Springer link, pp. 391–395Google Scholar
  24. 24.
    Prasad, B.G., Krishna, A.N.: Statistical texture feature-based retrieval and performance evaluation of CT brain images. In: IEEE Conference Publications, pp. 289–293 (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University College of Engineering KancheepuramKancheepuramIndia
  2. 2.Karpakam College of EngineeringCoimbatoreIndia

Personalised recommendations