Advertisement

A Lightweight Memory-Based Protocol Authentication Using Radio Frequency Identification (RFID)

  • Parvathy ArulmozhiEmail author
  • J. B. B. Rayappan
  • Pethuru Raj
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 750)

Abstract

The maturity and stability of the widely used service paradigm have brought in a variety of benefits not only for software applications but also all kinds of connected devices. Web Services hide all kinds of device heterogeneities and complexities and present a homogeneous outlook for every kind of devices. Manufacturing machines, healthcare instruments, defence equipment, household utensils, appliances and wares, the growing array of consumer electronics, handhelds, we are able, and mobiles are being empowered to be computing, communicative, sensitive and responsive. Device services are enabling these connected devices to interact with one another in order to fulfil various business requirements. XML, JSON and other data formats come handy in formulating and transmitting data messages amongst all kinds of participating applications, devices, databases and services. In such kinds of extremely and deeply connected environments, the data security and privacy are being touted as the most challenging aspects. It should be noted that even security algorithms of steganography and cryptography provides us with the probability of 0.6 when it comes to protection in a service environment. Having understood the urgent need for technologically powerful solutions for unbreakable and impenetrable security, we have come out a security solution using the proven and promising RFID technology that has the power to reduce the probability of device-based attacks such as brute-force attack, dictionary attack and key-log-related attacks—which would make the device applications and services immune from malicious programmes.

References

  1. 1.
    Chow, S.S.M., He, Y.J., Hui, L.C.K., Yiu, S.-M.: SPICE—Simple Privacy-Preserving Identity Management for Cloud Environment. In: Applied Cryptography and Network Security—ACNS 2012. LNCS, vol. 7341, pp. 526–543. Springer (2012)Google Scholar
  2. 2.
    Wang, C., Chow, S.S.M., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for secure cloud storage. IEEE Trans. Comput. 62(2), 362–375 (2013)Google Scholar
  3. 3.
    Wang, B., Chow, S.S.M., Li, M., Li, H.: Storing shared data on the cloud via security-mediator. In: International Conference on Distributed Computing Systems—ICDCS 2013. IEEE (2013)Google Scholar
  4. 4.
    Krzysztof Szczypiorski: (4 November 2003). Steganography in TCP/IP Networks. State of the Art and a Proposal of a New System—HICCUPS. Institute of Telecommunications Seminar. Retrieved 17 June 2010Google Scholar
  5. 5.
    Chu, C.-K., Chow, S.S.M., Tzeng, W.-G., Zhou, J., Deng, R.H.: Key-aggregate cryptosystem for scalable data sharing in cloud storage. IEEE Trans. Parallel Distrib. Syst. 25(2), 468–477 (2014)Google Scholar
  6. 6.
    Tuttle, J.R.: Traditional and emerging technologies and applications in the radio frequency identification (RFID) industry. In: Radio Frequency Integrated Circuits (RFIC) Symposium, 1997, pp. 5–8. IEEE (1997)Google Scholar
  7. 7.
    Leong, K.S., Ng, M.L., Grasso, A.R., Cole, P.H.: Synchronization of RFID readers for dense RFID reader environments. In: International Symposium on Applications and the Internet Workshops, 2006. SAINT Workshops 2006, pp. 4–51 (2006)Google Scholar
  8. 8.
    Dominikus, S., Aigner, M.J., Kraxberger, S.: Passive RFID technology for the Internet of Things. In: Workshop on RFID/ USN Security and Cryptography (2010)Google Scholar
  9. 9.
    Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T.: A survey on facilities for experimental internet of things research. IEEE Commun. Mag. 49(11), 58–67 (2011)Google Scholar
  10. 10.
    Chang, H., Choi, E.: User authentication in cloud computing. CCIS 120, 338–342 (2011)Google Scholar
  11. 11.
    Kim, H., Park, C.: Cloud computing and personal authentication service. KIISC 20, 11–19 (2010)Google Scholar
  12. 12.
    Parvathy, A., Rajasekhar, B., Nithya, C., Thenmozhi, K., Rayappan, J.B.B., Amirtharajan, R., Raj, P.: RFID in the cloud environment for Attendance monitoring systemGoogle Scholar
  13. 13.
    Noman, A.N.M., Rahman, S.M.M., Adams, C.: Improving security and usability of low cost RFID tags. In: 2011 Ninth Annual International Conference on Privacy, Security and Trust (PST), pp. 134–141, 19–21 July 2011Google Scholar
  14. 14.
    Arulmozhi, P., Rayappan, J.B.B., Raj, P.: The design and analysis of a hybrid attendance system leveraging a two factor (2f) authentication (fingerprint-radio frequency identification). Biomed. Res. Special Issue: S217–S222 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Parvathy Arulmozhi
    • 1
    Email author
  • J. B. B. Rayappan
    • 1
  • Pethuru Raj
    • 2
  1. 1.Department of Electronics & Communication Engineering, SEEESASTRA UniversityThanjavurIndia
  2. 2.Reliance Jio Cloud Services (JCS)BangaloreIndia

Personalised recommendations