Advertisement

Advances in the Understanding of Skeletal Myopathies from Zebrafish Models

  • Emily Claire Baxter
  • Robert J. Bryson-Richardson
Chapter

Abstract

Skeletal muscle diseases, or myopathies, are a diverse group of disorders that range in severity from mild muscle weakness to lethality and in onset from in utero to late adulthood. Whilst in some cases the genetic basis of these diseases is known, understanding of the mechanism underlying muscle weakness is often lacking, and there are no effective treatments for these diseases. Zebrafish (Danio rerio) are well established as a model system and offer many advantages in terms of time, cost and ease of experimental manipulation, and in vivo tracking of pathology, for the study of muscle. Both the process of muscle development and muscle function are highly conserved throughout evolution, and, as such, zebrafish muscle has remarkable structural and molecular similarities to that of human and is highly suited to the investigation of skeletal myopathies.

Zebrafish models have been widely applied to the evaluation of potential myopathy disease variants, meeting a growing need for rapid functional analysis given the increasing application of high-throughput sequencing. Many of the models that have been generated, across the range of myopathy subtypes, have been characterised in detail and present pathologies that are strikingly similar to those observed in patients. Research using these models has resulted in significant contributions to our understanding of disease biology and has identified potential therapies. Here we provide a review of zebrafish skeletal myopathy models, detail the advances they have made to the field and highlight areas where they are poised to significantly contribute in the future.

Keywords

Zebrafish Myopathy Muscular dystrophy Drug screening Model organism Muscle Treatment 

References

  1. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, Van Deutekom J, van Ommen GJ, Den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299CrossRefPubMedGoogle Scholar
  2. Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJB, Den Dunnen JT (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144CrossRefPubMedGoogle Scholar
  3. Agrawal PB, Greenleaf RS, Tomczak KK, Lehtokari V-L, Wallgren-Pettersson C, Wallefeld W, Laing NG, Darras BT, Maciver SK, Dormitzer PR (2007) Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin–binding protein, cofilin-2. Am J Hum Genet 80(1):162–167CrossRefPubMedGoogle Scholar
  4. Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE, Poulos MA, Tomczak KK, Ryan MM, Iannaccone ST, Crawford TO (2004) Heterogeneity of nemaline myopathy cases with skeletal muscle α-actin gene mutations. Ann Neurol 56(1):86–96CrossRefPubMedGoogle Scholar
  5. Alazami AM, Kentab AY, Faqeih E, Mohamed JY, Alkhalidi H, Hijazi H, Alkuraya FS (2015) A novel syndrome of Klippel-Feil anomaly, myopathy, and characteristic facies is linked to a null mutation in MYO18B. J Med Genet 52(6):400–404CrossRefPubMedGoogle Scholar
  6. Alexander M, Kawahara G, Motohashi N, Casar J, Eisenberg I, Myers J, Gasperini M, Estrella E, Kho A, Mitsuhashi S (2013) MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Differ 20(9):1194–1208CrossRefPubMedPubMedCentralGoogle Scholar
  7. Amali AA, Lin CJ-F, Chen Y-H, Wang W-L, Gong H-Y, Rekha RD, Lu J-K, Chen TT, Wu J-L (2008) Overexpression of Myostatin2 in zebrafish reduces the expression of dystrophin associated protein complex (DAPC) which leads to muscle dystrophy. J Biomed Sci 15(5):595–604CrossRefPubMedGoogle Scholar
  8. Amali AA, Lin CJF, Chen YH, Wang WL, Gong HY, Lee CY, Ko YL, Lu JK, Her GM, Chen TT (2004) Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev Dyn 229(4):847–856CrossRefPubMedGoogle Scholar
  9. Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A (2009) Oxidative stress in SEPN1-related myopathy: From pathophysiology to treatment. Ann Neurol 65(6):677–686CrossRefPubMedGoogle Scholar
  10. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20(2):143–148CrossRefPubMedGoogle Scholar
  11. Asai A, Sahani N, Kaneki M, Ouchi Y, Martyn JJ, Yasuhara SE (2007) Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS One 2(8):e806CrossRefPubMedPubMedCentralGoogle Scholar
  12. Australian Institute of Health and Welfare (AIHW) (2017a) Australian Cancer Incidence and Mortality (ACIM) books: Breast cancer. AIHW, Canberra. http://www.aihw.gov.au/acim-books Google Scholar
  13. Australian Institute of Health and Welfare (AIHW) (2017b) Australian Cancer Incidence and Mortality (ACIM) books: Melanoma of the skin. AIHW, Canberra. http://www.aihw.gov.au/acim-books Google Scholar
  14. Avşar-Ban E, Ishikawa H, Manya H, Watanabe M, Akiyama S, Miyake H, Endo T, Tamaru Y (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20(9):1089–1102CrossRefPubMedGoogle Scholar
  15. Bajanca F, Gonzalez-Perez V, Gillespie SJ, Beley C, Garcia L, Theveneau E, Sear RP, Hughes SM (2015) In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis. elife 4:e06541CrossRefPubMedCentralGoogle Scholar
  16. Balasubramanian A, Kawahara G, Gupta VA, Rozkalne A, Beauvais A, Kunkel LM, Gussoni E (2014) Fam65b is important for formation of the HDAC6-dysferlin protein complex during myogenic cell differentiation. FASEB J 28(7):2955–2969CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bansal D, Miyake K, Vogel SS, Groh S, Chen C-C, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423(6936):168–172CrossRefPubMedGoogle Scholar
  18. Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20(1):37–42CrossRefPubMedGoogle Scholar
  19. Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P, Keenan DG, Currie PD (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 130(23):5851–5860CrossRefPubMedGoogle Scholar
  20. Bauer H, Lele Z, Rauch G-J, Geisler R, Hammerschmidt M (2001) The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development 128(6):849–858PubMedGoogle Scholar
  21. Bendich A, D’Apolito P, Gabriel E, Machlin LJ (1984) Interaction of dietary vitamin C and vitamin E on guinea pig immune responses to mitogens. J Nutr 114(9):1588–1593CrossRefPubMedGoogle Scholar
  22. Berger J, Berger S, Jacoby AS, Wilton SD, Currie PD (2011) Evaluation of exon-skipping strategies for Duchenne muscular dystrophy utilizing dystrophin-deficient zebrafish. J Cell Mol Med 15(12):2643–2651CrossRefPubMedPubMedCentralGoogle Scholar
  23. Berger J, Berger S, Li M, Currie PD (2017) Myo18b is essential for sarcomere assembly in fast skeletal muscle. Hum Mol Genet 26(6):1146–1156PubMedGoogle Scholar
  24. Berger J, Tarakci H, Berger S, Li M, Hall TE, Arner A, Currie PD (2014) Loss of Tropomodulin4 in the zebrafish mutant träge causes cytoplasmic rod formation and muscle weakness reminiscent of nemaline myopathy. Dis Model Mech 7(12):1407–1415CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bernick EP, Zhang P-J, Du S (2010) Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol 11(1):70CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bitoun M, Maugenre S, Jeannet P-Y, Lacene E, Ferrer X, Laforet P, Martin J-J, Laporte J, Lochmüller H, Beggs AH (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37(11):1207–1209CrossRefPubMedGoogle Scholar
  27. Böhm J, Biancalana V, DeChene ET, Bitoun M, Pierson CR, Schaefer E, Karasoy H, Dempsey MA, Klein F, Dondaine N (2012) Mutation spectrum in the large GTPase dynamin 2, and genotype–phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mutat 33(6):949–959CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bouchet-Séraphin C, Vuillaumier-Barrot S, Seta N (2015) Dystroglycanopathies: About numerous genes involved in glycosylation of one single glycoprotein. J Neuromus Dis 2(1):27–38Google Scholar
  29. Boyden SE, Mahoney LJ, Kawahara G, Myers JA, Mitsuhashi S, Estrella EA, Duncan AR, Dey F, DeChene ET, Blasko-Goehringer JM (2012) Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics 13(2):115–124CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bragato C, Gaudenzi G, Blasevich F, Pavesi G, Maggi L, Giunta M, Cotelli F, Mora M (2016) Zebrafish as a model to investigate dynamin 2-related diseases. Sci Rep 6Google Scholar
  31. Bretaud S, Pagnon-Minot A, Guillon E, Ruggiero F, Le Guellec D (2011) Characterization of spatial and temporal expression pattern of Col15a1b during zebrafish development. Gene Expr Patterns 11(1):129–134CrossRefPubMedGoogle Scholar
  32. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300(2):535–543CrossRefPubMedGoogle Scholar
  33. Bührdel JB, Hirth S, Keßler M, Westphal S, Forster M, Manta L, Wiche G, Schoser B, Schessl J, Schröder R (2015) In vivo characterization of human myofibrillar myopathy genes in zebrafish. Biochem Biophys Res Commun 461(2):217–223CrossRefPubMedGoogle Scholar
  34. Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP, Connolly AM, Day JW, Flanigan KM, Goemans N (2014) Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 50(4):477–487CrossRefPubMedGoogle Scholar
  35. Bushby K, Kirschner J, Luo X, Elfring G, Kroger H, Riebling P, Ong T, Spiegel R, Peltz S, Muntoni F (2016) Results of North Star Ambulatory Assessments (NSAA) in the Phase 3 Ataluren Confirmatory Trial in Patients with Nonsense Mutation Duchenne Muscular Dystrophy (ACT DMD)(I15. 008). Neurology 86(16 Supplement):I15. 008Google Scholar
  36. Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, Kamsteeg E-J, van den Elzen C, van Beusekom E, Blaser S (2013) Missense mutations in β-1, 3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker–Warburg syndrome. Hum Mol Genet 22(9):1746–1754CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cao P, Hanai J-i, Tanksale P, Imamura S, Sukhatme VP, Lecker SH (2009) Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J 23(9):2844–2854CrossRefPubMedPubMedCentralGoogle Scholar
  38. Carss KJ, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, Hoischen A, Willer T, Van Scherpenzeel M, Moore SA (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet 93(1):29–41CrossRefPubMedPubMedCentralGoogle Scholar
  39. Charvet B, Guiraud A, Malbouyres M, Zwolanek D, Guillon E, Bretaud S, Monnot C, Schulze J, Bader HL, Allard B (2013) Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development 140(22):4602–4613CrossRefPubMedGoogle Scholar
  40. Chauveau C, Rowell J, Ferreiro A (2014) A rising titan: TTN review and mutation update. Hum Mutat 35(9):1046–1059CrossRefPubMedGoogle Scholar
  41. Cheng L, Guo X-f, Yang X-y, Chong M, Cheng J, Li G, Y-h G, Lu D-r (2006) δ-Sarcoglycan is necessary for early heart and muscle development in zebrafish. Biochem Biophys Res Commun 344(4):1290–1299CrossRefPubMedGoogle Scholar
  42. Cheng W, Tian J, Burgunder J-M, Hunziker W, Eng H-L (2014) Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics. PLoS One 9(8):e103445CrossRefPubMedPubMedCentralGoogle Scholar
  43. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605CrossRefPubMedPubMedCentralGoogle Scholar
  44. Clapp J, Mitchell LM, Bolland DJ, Fantes J, Corcoran AE, Scotting PJ, Armour JA, Hewitt JE (2007) Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. Am J Hum Genet 81(2):264–279CrossRefPubMedPubMedCentralGoogle Scholar
  45. Comyn SA, Pilgrim D (2012) Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development. PLoS One 7(11):e48861CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cooper ST, McNeil PL (2015) Membrane repair: mechanisms and pathophysiology. Physiol Rev 95(4):1205–1240CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dabrowski K (1990) Gulonolactone oxidase is missing in teleost fish. The direct spectrophotometric assay. Biol Chem Hoppe Seyler 371(1):207–214CrossRefPubMedGoogle Scholar
  48. Danen EH, Sonnenberg A (2003) Erratum: Integrins in regulation of tissue development and function. J Pathol; 200: 471–480. J Pathol 201(4):632–641CrossRefPubMedGoogle Scholar
  49. Davidson AE, Siddiqui FM, Lopez MA, Lunt P, Carlson HA, Moore BE, Love S, Born DE, Roper H, Majumdar A (2013) Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. Brain 136(2):508–521CrossRefPubMedPubMedCentralGoogle Scholar
  50. Daya A, Vatine GD, Becker-Cohen M, Tal-Goldberg T, Friedmann A, Gothilf Y, Du SJ, Mitrani-Rosenbaum S (2014) Gne depletion during zebrafish development impairs skeletal muscle structure and function. Hum Mol Genet 23(13):3349–3361CrossRefPubMedGoogle Scholar
  51. Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A (2007) Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res 313(1):156–167CrossRefPubMedGoogle Scholar
  52. Deutekom JCV, Wljmenga C, Tlenhoven EAV, Gruter A-M, Hewitt JE, Padberg GW, G-JBv O, Hofker MH, Fronts RR (1993) FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 2(12):2037–2042CrossRefPubMedGoogle Scholar
  53. DiCostanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, Gupta VA, Sunu CM, Timothy WY, Kang PB (2014) POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet ddu296Google Scholar
  54. Dixit M, Ansseau E, Tassin A, Winokur S, Shi R, Qian H, Sauvage S, Mattéotti C, van Acker AM, Leo O (2007) DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci 104(46):18157–18162CrossRefPubMedGoogle Scholar
  55. Dodd A, Chambers SP, Love DR (2004) Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett 561(1-3):89–93CrossRefPubMedGoogle Scholar
  56. Donner K, Ollikainen M, Ridanpää M, Christen H-J, Goebel HH, de Visser M, Pelin K, Wallgren-Pettersson C (2002) Mutations in the β-tropomyosin (TPM2) gene–a rare cause of nemaline myopathy. Neuromuscul Disord 12(2):151–158CrossRefPubMedGoogle Scholar
  57. Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T, Marty I, Lunardi J, Brooks SV, Kuwada JY (2012) Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain 135(4):1115–1127CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5(2):e1000372CrossRefPubMedPubMedCentralGoogle Scholar
  59. Du SJ, Li H, Bian Y, Zhong Y (2008) Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci 105(2):554–559CrossRefPubMedGoogle Scholar
  60. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–809CrossRefPubMedGoogle Scholar
  61. Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strähle U (2007) The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 308(1):133–143CrossRefPubMedGoogle Scholar
  62. Etard C, Roostalu U, Strähle U (2010) Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. J Cell Biol 189(3):527–539CrossRefPubMedPubMedCentralGoogle Scholar
  63. Fadok V, Voelker D, Campbell P, Cohen J, Bratton D, Henson P (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216PubMedGoogle Scholar
  64. Finkel RS, Flanigan KM, Wong B, Bönnemann C, Sampson J, Sweeney HL, Reha A, Northcutt VJ, Elfring G, Barth J (2013) Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One 8(12):e81302CrossRefPubMedPubMedCentralGoogle Scholar
  65. Flanigan KM, Dunn DM, Von Niederhausern A, Soltanzadeh P, Gappmaier E, Howard MT, Sampson JB, Mendell JR, Wall C, King WM (2009) Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 30(12):1657–1666CrossRefPubMedPubMedCentralGoogle Scholar
  66. Follo C, Ozzano M, Montalenti C, Santoro MM, Isidoro C (2013) Knockdown of cathepsin D in zebrafish fertilized eggs determines congenital myopathy. Biosci Rep 33(2):e00034CrossRefPubMedPubMedCentralGoogle Scholar
  67. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H, Kneitz B, Edelmann W, Lisanti MP (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276(24):21425–21433CrossRefPubMedGoogle Scholar
  68. Geis T, Marquard K, Rödl T, Reihle C, Schirmer S, von Kalle T, Bornemann A, Hehr U, Blankenburg M (2013) Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14(3-4):205CrossRefPubMedGoogle Scholar
  69. Gibbs EM, Clarke NF, Rose K, Oates EC, Webster R, Feldman EL, Dowling JJ (2013) Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med 91(6):727–737CrossRefPubMedGoogle Scholar
  70. Gibbs EM, Davidson AE, Telfer WR, Feldman EL, Dowling JJ (2014) The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish. Dis Model Mech 7(1):157–161CrossRefPubMedGoogle Scholar
  71. Gibbs EM, Feldman EL, Dowling JJ (2010) The role of MTMR14 in autophagy and in muscle disease. Autophagy 6(6):819–820CrossRefPubMedGoogle Scholar
  72. Gnocchi VF, White RB, Ono Y, Ellis JA, Zammit PS (2009) Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One 4(4):e5205CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci 98(25):14440–14445CrossRefPubMedGoogle Scholar
  74. Goody MF, Kelly MW, Reynolds CJ, Khalil A, Crawford BD, Henry CA (2012) NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 10(10):e1001409CrossRefPubMedPubMedCentralGoogle Scholar
  75. Guggenheim MA, Ringel SP, Silverman A, Grabert BE (1982) Progressive neuromuscular disease in children with chronic cholestasis and vitamin E deficiency: diagnosis and treatment with alpha tocopherol. J Pediatr 100(1):51–58CrossRefPubMedGoogle Scholar
  76. Guiraud S, Davies KE (2017) Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol 34:36–48CrossRefPubMedGoogle Scholar
  77. Gupta V, Kawahara G, Gundry SR, Chen AT, Lencer WI, Zhou Y, Zon LI, Kunkel LM, Beggs AH (2011) The zebrafish dag1 mutant: a novel genetic model for dystroglycanopathies. Hum Mol Genet 20(9):1712–1725CrossRefPubMedPubMedCentralGoogle Scholar
  78. Gupta VA, Hnia K, Smith LL, Gundry SR, McIntire JE, Shimazu J, Bass JR, Talbot EA, Amoasii L, Goldman NE (2013a) Loss of catalytically inactive lipid phosphatase myotubularin-related protein 12 impairs myotubularin stability and promotes centronuclear myopathy in zebrafish. PLoS Genet 9(6):e1003583CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gupta VA, Kawahara G, Myers JA, Chen AT, Hall TE, Manzini MC, Currie PD, Zhou Y, Zon LI, Kunkel LM (2012) A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish. PLoS One 7(8):e43794CrossRefPubMedPubMedCentralGoogle Scholar
  80. Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke NF, Darras BT (2013b) Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet 93(6):1108–1117CrossRefPubMedPubMedCentralGoogle Scholar
  81. Gurung R, Ono Y, Baxendale S, Lee SLC, Moore S, Calvert M, Ingham PW (2017) A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B. Genetics 205(2):725–735CrossRefPubMedGoogle Scholar
  82. Guyon J, Mosley A, Zhou Y, O’brien K, Sheng X, Chiang K, Davidson A, Volinski J, Zon L, Kunkel L (2003) The dystrophin associated protein complex in zebrafish. Hum Mol Genet 12(6):601–615CrossRefPubMedGoogle Scholar
  83. Guyon JR, Goswami J, Jun SJ, Thorne M, Howell M, Pusack T, Kawahara G, Steffen LS, Galdzicki M, Kunkel LM (2009) Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin. Hum Mol Genet 18(1):202–211CrossRefPubMedGoogle Scholar
  84. Guyon JR, Mosley AN, Jun SJ, Montanaro F, Steffen LS, Zhou Y, Nigro V, Zon LI, Kunkel LM (2005) δ-sarcoglycan is required for early zebrafish muscle organization. Exp Cell Res 304(1):105–115CrossRefPubMedGoogle Scholar
  85. Hall TE, Bryson-Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy. Proc Natl Acad Sci 104(17):7092–7097CrossRefPubMedGoogle Scholar
  86. Hamilton IM, Gilmore WS, Benzie IF, Mulholland CW, Strain J (2000) Interactions between vitamins C and E in human subjects. Br J Nutr 84(3):261–267CrossRefPubMedGoogle Scholar
  87. Hanai J-i, Cao P, Tanksale P, Imamura S, Koshimizu E, Zhao J, Kishi S, Yamashita M, Phillips PS, Sukhatme VP (2007) The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J Clin Invest 117(12):3940PubMedPubMedCentralGoogle Scholar
  88. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltrán-Valero de Bernabé D, Gündeşli H, Willer T, Satz JS, Crawford RW, Burden SJ (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 364(10):939–946CrossRefPubMedPubMedCentralGoogle Scholar
  89. Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, Harper HA, Robinson AS, Engelhardt JF, Brooks SV (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8(3):253–261CrossRefPubMedGoogle Scholar
  90. Hawkins TA, Haramis A-P, Etard C, Prodromou C, Vaughan CK, Ashworth R, Ray S, Behra M, Holder N, Talbot WS (2008) The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 135(6):1147–1156CrossRefPubMedPubMedCentralGoogle Scholar
  91. Hewitt JE, Lyle R, Clark LN, Valleley EM, Wright TJ, Wijmenga C, van Deutekom JC, Francis F, Sharpe PT, Hofker M (1994) Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystropothhy. Hum Mol Genet 3(8):1287–1295CrossRefPubMedGoogle Scholar
  92. Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132(1):113–124CrossRefPubMedPubMedCentralGoogle Scholar
  93. Hirata H, Saint-Amant L, Waterbury J, Cui W, Zhou W, Li Q, Goldman D, Granato M, Kuwada JY (2004) accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development 131(21):5457–5468CrossRefPubMedGoogle Scholar
  94. Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, Cui WW, Zhou W, Kuwada JY (2007) Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 134(15):2771–2781CrossRefPubMedGoogle Scholar
  95. Hoang QV, Blair MP, Rahmani B, Galasso JM, Shapiro MJ (2011) Multiple retinal holes and peripheral nonperfusion in muscle-eye-brain disease. Arch Ophthalmol 129(3):373–379CrossRefPubMedGoogle Scholar
  96. Hoffman EP, Fischbeck KH, Brown RH, Johnson M, Medori R, Loire JD, Harris JB, Waterston R, Brooke M, Specht L (1988) Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. N Engl J Med 318(21):1363–1368CrossRefPubMedGoogle Scholar
  97. Horstick EJ, Linsley JW, Dowling JJ, Hauser MA, McDonald KK, Ashley-Koch A, Saint-Amant L, Satish A, Cui WW, Zhou W (2013) Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun 4:1952CrossRefPubMedPubMedCentralGoogle Scholar
  98. Housley MP, Njaine B, Ricciardi F, Stone OA, Hölper S, Krüger M, Kostin S, Stainier DY (2016) Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish. PLoS Genet 12(6):e1006099CrossRefPubMedPubMedCentralGoogle Scholar
  99. Huang S-H, Hsiao C-D, Lin D-S, Chow C-Y, Chang C-J, Liau I (2011) Imaging of zebrafish in vivo with second-harmonic generation reveals shortened sarcomeres associated with myopathy induced by statin. PLoS One 6(9):e24764CrossRefPubMedPubMedCentralGoogle Scholar
  100. Ilsley J, Sudol M, Winder S (2001) The interaction of dystrophin with β-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 13(9):625–632CrossRefPubMedGoogle Scholar
  101. James M, Nuttall A, Ilsley J, Ottersbach K, Tinsley J, Sudol M, Winder S (2000) Adhesion-dependent tyrosine phosphorylation of (beta)-dystroglycan regulates its interaction with utrophin. J Cell Sci 113(10):1717–1726PubMedGoogle Scholar
  102. Johnson NM, Farr GH III, Maves L (2013) The HDAC Inhibitor TSA Ameliorates a zebrafish model of duchenne muscular dystrophy. PLOS Curr Musc DystGoogle Scholar
  103. Johnston JJ, Kelley RI, Crawford TO, Morton DH, Agarwala R, Koch T, Schäffer AA, Francomano CA, Biesecker LG (2000) A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 67(4):814–821CrossRefPubMedPubMedCentralGoogle Scholar
  104. Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci 105(34):12485–12490CrossRefPubMedGoogle Scholar
  105. Just S, Meder B, Berger IM, Etard C, Trano N, Patzel E, Hassel D, Marquart S, Dahme T, Vogel B (2011) The myosin-interacting protein SMYD1 is essential for sarcomere organization. J Cell Sci 124(18):3127–3136CrossRefPubMedGoogle Scholar
  106. Kawahara G, Gasperini MJ, Myers JA, Widrick JJ, Eran A, Serafini PR, Alexander MS, Pletcher MT, Morris CA, Kunkel LM (2014) Dystrophic muscle improvement in zebrafish via increased heme oxygenase signaling. Hum Mol Genet 23(7):1869–1878CrossRefPubMedGoogle Scholar
  107. Kawahara G, Guyon JR, Nakamura Y, Kunkel LM (2009) Zebrafish models for human FKRP muscular dystrophies. Hum Mol Genet ddp528Google Scholar
  108. Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM (2011a) Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci 108(13):5331–5336CrossRefPubMedGoogle Scholar
  109. Kawahara G, Serafini PR, Myers JA, Alexander MS, Kunkel LM (2011b) Characterization of zebrafish dysferlin by morpholino knockdown. Biochem Biophys Res Commun 413(2):358–363CrossRefPubMedPubMedCentralGoogle Scholar
  110. Khairallah M, Khairallah R, Young M, Allen B, Gillis M, Danialou G, Deschepper C, Petrof B, Des Rosiers C (2008) Sildenafil and cardiomyocyte-specific cGMP signaling prevent cardiomyopathic changes associated with dystrophin deficiency. Proc Natl Acad Sci 105(19):7028–7033CrossRefPubMedGoogle Scholar
  111. Klein CJ, Coovert DD, Bulman DE, Ray PN, Mendell JR, Burghes A (1992) Somatic reversion/suppression in Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers. Am J Hum Genet 50(5):950PubMedPubMedCentralGoogle Scholar
  112. Kleopa KA, Kyriacou K, Zamba-Papanicolaou E, Kyriakides T (2005) Reversible inflammatory and vacuolar myopathy with vitamin E deficiency in celiac disease. Muscle Nerve 31(2):260–265CrossRefPubMedGoogle Scholar
  113. Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA (2008) Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456(7221):511–515CrossRefPubMedPubMedCentralGoogle Scholar
  114. Koshimizu E, Imamura S, Qi J, Toure J, Valdez DM Jr, Carr CE, Hanai J-i, Kishi S (2011) Embryonic senescence and laminopathies in a progeroid zebrafish model. PLoS One 6(3):e17688CrossRefPubMedPubMedCentralGoogle Scholar
  115. Koutsopoulos OS, Kretz C, Weller CM, Roux A, Mojzisova H, Böhm J, Koch C, Toussaint A, Heckel E, Stemkens D (2013) Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet 21(6):637–642CrossRefPubMedGoogle Scholar
  116. Kozopas KM, Nusse R (2002) Direct flight muscles in Drosophila develop from cells with characteristics of founders and depend on DWnt-2 for their correct patterning. Dev Biol 243(2):312–325CrossRefPubMedGoogle Scholar
  117. Laing N, Wilton S, Akkari P, Dorosz S, Boundy K, Kneebone C, Blumbergs P, White S, Watkins H, Love D (1995) A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 10(2):249–249CrossRefPubMedGoogle Scholar
  118. Lebold KM, Löhr CV, Barton CL, Miller GW, Labut EM, Tanguay RL, Traber MG (2013) Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior. Comp Biochem Physiol Part C Toxicol Pharmacol 157(4):382–389CrossRefGoogle Scholar
  119. Leong IU, Skinner JR, Shelling AN, Love DR (2014) Expression of a mutant kcnj2 gene transcript in zebrafish. ISRN Mol Biol 2014Google Scholar
  120. Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, Zhang J, Fang S, Du SJ (2013a) Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol Biol Cell 24(22):3511–3521CrossRefPubMedPubMedCentralGoogle Scholar
  121. Li M, Andersson-Lendahl M, Sejersen T, Arner A (2013b) Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle. J Gen Physiol 141(3):335–345CrossRefPubMedPubMedCentralGoogle Scholar
  122. Li M, Andersson-Lendahl M, Sejersen T, Arner A (2014) Muscle dysfunction and structural defects of dystrophin-null sapje mutant zebrafish larvae are rescued by ataluren treatment. FASEB J 28(4):1593–1599CrossRefPubMedGoogle Scholar
  123. Li M, Andersson-Lendahl M, Sejersen T, Arner A (2016) Knockdown of fast skeletal myosin-binding protein C in zebrafish results in a severe skeletal myopathy. J Gen Physiol 147(4):309–322CrossRefPubMedPubMedCentralGoogle Scholar
  124. Lim KRQ, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533CrossRefPubMedPubMedCentralGoogle Scholar
  125. Lin Y-Y, White RJ, Torelli S, Cirak S, Muntoni F, Stemple DL (2011) Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies. Hum Mol Genet ddr059Google Scholar
  126. Lindsell CE, Shawber CJ, Boulter J, Weinmaster G (1995) Jagged: a mammalian ligand that activates Notch1. Cell 80(6):909–917CrossRefPubMedGoogle Scholar
  127. Linsley JW, Hsu I-U, Groom L, Yarotskyy V, Lavorato M, Horstick EJ, Linsley D, Wang W, Franzini-Armstrong C, Dirksen RT (2017) Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3. Proc Natl Acad Sci 114(2):E228–E236CrossRefPubMedGoogle Scholar
  128. Lipscomb L, Piggott RW, Emmerson T, Winder SJ (2016) Dasatinib as a treatment for Duchenne muscular dystrophy. Hum Mol Genet 25(2):266–274CrossRefPubMedGoogle Scholar
  129. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20(1):31–36CrossRefPubMedGoogle Scholar
  130. Lo HP, Nixon SJ, Hall TE, Cowling BS, Ferguson C, Morgan GP, Schieber NL, Fernandez-Rojo MA, Bastiani M, Floetenmeyer M, Martel N, Laporte J, Pilch PF, Parton RG (2015) The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol 210(5):833–849CrossRefPubMedPubMedCentralGoogle Scholar
  131. Ludman A, Venugopal V, Yellon DM, Hausenloy DJ (2009) Statins and cardioprotection—more than just lipid lowering? Pharmacol Ther 122(1):30–43CrossRefGoogle Scholar
  132. Lyle R, Wright TJ, Clark LN, Hewitt JE (1995) The FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes. Genomics 28(3):389–397CrossRefPubMedGoogle Scholar
  133. Machuca-Tzili LE, Buxton S, Thorpe A, Timson CM, Wigmore P, Luther PK, Brook JD (2011) Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. Dis Model Mech 4(3):381–392CrossRefPubMedPubMedCentralGoogle Scholar
  134. Maerkens A, Olivé M, Schreiner A, Feldkirchner S, Schessl J, Uszkoreit J, Barkovits K, Güttsches A, Theis V, Eisenacher M (2016) New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol Commun 4(1):8CrossRefPubMedPubMedCentralGoogle Scholar
  135. Majczenko K, Davidson AE, Camelo-Piragua S, Agrawal PB, Manfready RA, Li X, Joshi S, Xu J, Peng W, Beggs AH (2012) Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet 91(2):365–371CrossRefPubMedPubMedCentralGoogle Scholar
  136. Malfatti E, Böhm J, Lacène E, Beuvin M, Brochier G, Romero NB, Laporte J (2015) A premature stop codon in MYO18B is associated with severe nemaline myopathy with cardiomyopathy. J Neuromu Dis 2(3):219–227Google Scholar
  137. Malfatti E, Lehtokari V-L, Böhm J, De Winter JM, Schäffer U, Estournet B, Quijano-Roy S, Monges S, Lubieniecki F, Bellance R (2014) Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype. Acta Neuropathol Commun 2(1):44CrossRefPubMedPubMedCentralGoogle Scholar
  138. Manzini MC, Tambunan DE, Hill RS, Tim WY, Maynard TM, Heinzen EL, Shianna KV, Stevens CR, Partlow JN, Barry BJ (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 91(3):541–547CrossRefPubMedPubMedCentralGoogle Scholar
  139. Marchese M, Pappalardo A, Baldacci J, Verri T, Doccini S, Cassandrini D, Bruno C, Fiorillo C, Garcia-Gil M, Bertini E (2016) Dolichol-phosphate mannose synthase depletion in zebrafish leads to dystrophic muscle with hypoglycosylated α-dystroglycan. Biochem Biophys Res Commun 477(1):137–143CrossRefPubMedGoogle Scholar
  140. Martin EA, Barresi R, Byrne BJ, Tsimerinov EI, Scott BL, Walker AE, Gurudevan SV, Anene F, Elashoff RM, Thomas GD (2012) Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy. Sci Transl Med 4(162):162ra155–162ra155CrossRefPubMedPubMedCentralGoogle Scholar
  141. Marty I, Fauré J (2016) Excitation-Contraction Coupling Alterations in Myopathies. J Neuromu Dis 3(4):443–453Google Scholar
  142. Middel V, Zhou L, Takamiya M, Beil T, Shahid M, Roostalu U, Grabher C, Rastegar S, Reischl M, Nienhaus GU (2016) Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nat Commun 7:12875CrossRefPubMedPubMedCentralGoogle Scholar
  143. Miller GW, Labut EM, Lebold KM, Floeter A, Tanguay RL, Traber MG (2012) Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality. J Nutr Biochem 23(5):478–486CrossRefPubMedGoogle Scholar
  144. Minetti C, Bado M, Broda P, Sotgia F, Bruno C, Galbiati F, Volonte D, Lucania G, Pavan A, Bonilla E (2002) Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency. Am J Pathol 160(1):265–270CrossRefPubMedPubMedCentralGoogle Scholar
  145. Mintzer KA, Lee MA, Runke G, Trout J, Whitman M, Mullins MC (2001) Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128(6):859–869PubMedGoogle Scholar
  146. Mitsuhashi H, Mitsuhashi S, Lynn-Jones T, Kawahara G, Kunkel LM (2013) Expression of DUX4 in zebrafish development recapitulates facioscapulohumeral muscular dystrophy. Hum Mol Genet 22(3):568–577CrossRefPubMedGoogle Scholar
  147. Myhre JL, Hills JA, Jean F, Pilgrim DB (2014a) Unc45b is essential for early myofibrillogenesis and costamere formation in zebrafish. Dev Biol 390(1):26–40CrossRefPubMedGoogle Scholar
  148. Myhre JL, Hills JA, Prill K, Wohlgemuth SL, Pilgrim DB (2014b) The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish. Dev Biol 387(1):93–108CrossRefPubMedGoogle Scholar
  149. Nam T-S, Li W, Heo S-H, Lee K-H, Cho A, Shin J-H, Kim YO, Chae J-H, Kim D-S, Kim M-K (2015) A novel mutation in DNAJB6, p.(Phe91Leu), in childhood-onset LGMD1D with a severe phenotype. Neuromuscul Disord 25(11):843–851CrossRefPubMedGoogle Scholar
  150. Natera-de Benito D, Nascimento A, Abicht A, Ortez C, Jou C, Müller J, Evangelista T, Töpf A, Thompson R, Jimenez-Mallebrera C (2016) KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors. J Neurol 263(3):517–523CrossRefPubMedGoogle Scholar
  151. Nelson JS (2009) Neuropathological studies of chronic vitamin E deficiency in mammals including humans. Biol Vit E 845:92Google Scholar
  152. Nelson MD, Rader F, Tang X, Tavyev J, Nelson SF, Miceli MC, Elashoff RM, Sweeney HL, Victor RG (2014) PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 82(23):2085–2091CrossRefPubMedPubMedCentralGoogle Scholar
  153. Nixon SJ, Wegner J, Ferguson C, Mery P-F, Hancock JF, Currie PD, Key B, Westerfield M, Parton RG (2005) Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Hum Mol Genet 14(13):1727–1743CrossRefPubMedGoogle Scholar
  154. Norwood FL, Harling C, Chinnery PF, Eagle M, Bushby K, Straub V (2009) Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain awp236Google Scholar
  155. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, Jacob RL, Hübner C, Oexle K, Anderson JR (1999) Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23(2):208–212CrossRefPubMedGoogle Scholar
  156. O’Grady GL, Best HA, Sztal TE, Schartner V, Sanjuan-Vazquez M, Donkervoort S, Neto OA, Sutton RB, Ilkovski B, Romero NB (2016) Variants in the Oxidoreductase PYROXD1 Cause Early-Onset Myopathy with Internalized Nuclei and Myofibrillar Disorganization. Am J Hum Genet 99(5):1086–1105CrossRefPubMedPubMedCentralGoogle Scholar
  157. Osborn DP, Pond HL, Mazaheri N, Dejardin J, Munn CJ, Mushref K, Cauley ES, Moroni I, Pasanisi MB, Sellars EA (2017) Mutations in INPP5K Cause a Form of Congenital Muscular Dystrophy Overlapping Marinesco-Sjögren Syndrome and Dystroglycanopathy. Am J Hum Genet 100(3):537–545CrossRefPubMedPubMedCentralGoogle Scholar
  158. Pagnon-Minot A, Malbouyres M, Haftek-Terreau Z, Kim HR, Sasaki T, Thisse C, Thisse B, Ingham PW, Ruggiero F, Le Guellec D (2008) Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development. Dev Biol 316(1):21–35CrossRefPubMedGoogle Scholar
  159. Park HJ, Hong YB, Choi YC, Lee J, Kim EJ, Lee JS, Mo WM, Ki SM, Kim HI, Kim HJ (2016) ADSSL1 mutation relevant to autosomal recessive adolescent onset distal myopathy. Ann Neurol 79(2):231–243CrossRefPubMedGoogle Scholar
  160. Parsons MJ, Campos I, Hirst EM, Stemple DL (2002) Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 129(14):3505–3512PubMedGoogle Scholar
  161. Pelin K, Hilpelä P, Donner K, Sewry C, Akkari PA, Wilton SD, Wattanasirichaigoon D, Bang M-L, Centner T, Hanefeld F (1999) Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci 96(5):2305–2310CrossRefPubMedGoogle Scholar
  162. Pichavant C, Aartsma-Rus A, Clemens PR, Davies KE, Dickson G, Si T, Wilton SD, Wolff JA, Wooddell CI, Xiao X (2011) Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 19(5):830–840CrossRefPubMedPubMedCentralGoogle Scholar
  163. Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113(7):841–852CrossRefPubMedGoogle Scholar
  164. Pope C, Karanth S, Liu J (2005) Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol 19(3):433–446CrossRefPubMedGoogle Scholar
  165. Postel R, Vakeel P, Topczewski J, Knöll R, Bakkers J (2008) Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin–ECM adhesion complex. Dev Biol 318(1):92–101CrossRefPubMedGoogle Scholar
  166. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276CrossRefPubMedPubMedCentralGoogle Scholar
  167. Praissman JL, Willer T, Sheikh MO, Toi A, Chitayat D, Lin Y-Y, Lee H, Stalnaker SH, Wang S, Prabhakar PK (2016) The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. elife 5:e14473CrossRefPubMedPubMedCentralGoogle Scholar
  168. Prill K, Reid PW, Wohlgemuth SL, Pilgrim DB (2015) Still heart encodes a structural HMT, SMYD1b, with chaperone-like function during fast muscle sarcomere assembly. PLoS One 10(11):e0142528CrossRefPubMedPubMedCentralGoogle Scholar
  169. Radev Z, Hermel J-M, Elipot Y, Bretaud S, Arnould S, Duchateau P, Ruggiero F, Joly J-S, Sohm F (2015) A TALEN-Exon skipping design for a Bethlem Myopathy model in zebrafish. PLoS One 10(7):e0133986CrossRefPubMedPubMedCentralGoogle Scholar
  170. Ramanoudjame L, Rocancourt C, Lainé J, Klein A, Joassard L, Gartioux C, Fleury M, Lyphout L, Kabashi E, Ciura S (2015) Two novel COLVI long chains in zebrafish that are essential for muscle development. Hum Mol Genet ddv368Google Scholar
  171. Ramspacher C, Steed E, Boselli F, Ferreira R, Faggianelli N, Roth S, Spiegelhalter C, Messaddeq N, Trinh L, Liebling M (2015) Developmental alterations in heart biomechanics and skeletal muscle function in desmin mutants suggest an early pathological root for desminopathies. Cell Rep 11(10):1564–1576CrossRefPubMedGoogle Scholar
  172. Ravenscroft G, Miyatake S, Lehtokari V-L, Todd EJ, Vornanen P, Yau KS, Hayashi YK, Miyake N, Tsurusaki Y, Doi H (2013) Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 93(1):6–18CrossRefPubMedPubMedCentralGoogle Scholar
  173. Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C, Huang F, Gaburjakova M, Gaburjakova J, Rosemblit N (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle. J Cell Biol 160(6):919–928CrossRefPubMedPubMedCentralGoogle Scholar
  174. Rigotti A (2007) Absorption, transport, and tissue delivery of vitamin E. Mol Asp Med 28(5):423–436CrossRefGoogle Scholar
  175. Robb SA, Sewry CA, Dowling JJ, Feng L, Cullup T, Lillis S, Abbs S, Lees MM, Laporte J, Manzur AY (2011) Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscul Disord 21(6):379–386CrossRefPubMedGoogle Scholar
  176. Roostalu U, Strähle U (2012) In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 22(3):515–529CrossRefPubMedGoogle Scholar
  177. Roscioli T, Kamsteeg E-J, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, van Beusekom E, Riemersma M, Pfundt R, Vissers LE (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of [alpha]-dystroglycan. Nat Genet 44(5):581–585CrossRefPubMedPubMedCentralGoogle Scholar
  178. Rosenson RS (2004) Current overview of statin-induced myopathy. Am J Med 116(6):408–416CrossRefPubMedGoogle Scholar
  179. Ruf-Zamojski F, Trivedi V, Fraser SE, Trinh LA (2015) Spatio-temporal differences in dystrophin dynamics at mRNA and protein levels revealed by a novel FlipTrap line. PLoS One 10(6):e0128944CrossRefPubMedPubMedCentralGoogle Scholar
  180. Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ (2016) FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet ddw080Google Scholar
  181. Ruparelia AA, Oorschot V, Vaz R, Ramm G, Bryson-Richardson RJ (2014) Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol 128(6):821–833CrossRefPubMedGoogle Scholar
  182. Ruparelia AA, Zhao M, Currie PD, Bryson-Richardson RJ (2012) Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. Hum Mol Genet 21(18):4073–4083CrossRefPubMedGoogle Scholar
  183. Ryckebüsch L, Hernandez L, Wang C, Phan J, Yelon D (2016) Tmem2 regulates cell-matrix interactions that are essential for muscle fiber attachment. Development 143(16):2965–2972CrossRefPubMedPubMedCentralGoogle Scholar
  184. Sabha N, Volpatti JR, Gonorazky H, Reifler A, Davidson AE, Li X, Eltayeb NM, Dall’Armi C, Di Paolo G, Brooks SV (2016) PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J Clin Invest 126(9):3613CrossRefPubMedPubMedCentralGoogle Scholar
  185. Sambuughin N, Swietnicki W, Techtmann S, Matrosova V, Wallace T, Goldfarb L, Maynard E (2012) KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochem Biophys Res Commun 421(4):743–749CrossRefPubMedPubMedCentralGoogle Scholar
  186. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque H, Screen M, McDonald K, Stajich JM, Mahjneh I, Vihola A (2012) Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 44(4):450–455CrossRefPubMedPubMedCentralGoogle Scholar
  188. Schindler RF, Scotton C, Zhang J, Passarelli C, Ortiz-Bonnin B, Simrick S, Schwerte T, Poon K-L, Fang M, Rinné S (2016) POPDC1S201F causes muscular dystrophy and arrhythmia by affecting protein trafficking. J Clin Invest 126(1):239CrossRefPubMedGoogle Scholar
  189. Seger C, Hargrave M, Wang X, Chai RJ, Elworthy S, Ingham PW (2011) Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Dev Dyn 240(11):2440–2451CrossRefPubMedGoogle Scholar
  190. Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV, Engel AG (2009) Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 65(1):83–89CrossRefPubMedPubMedCentralGoogle Scholar
  191. Shamseldin HE, Bennett AH, Alfadhel M, Gupta V, Alkuraya FS (2016a) GOLGA2, encoding a master regulator of golgi apparatus, is mutated in a patient with a neuromuscular disorder. Hum Genet 135(2):245–251CrossRefPubMedPubMedCentralGoogle Scholar
  192. Shamseldin HE, Smith LL, Kentab A, Alkhalidi H, Summers B, Alsedairy H, Xiong Y, Gupta VA, Alkuraya FS (2016b) Mutation of the mitochondrial carrier SLC25A42 causes a novel form of mitochondrial myopathy in humans. Hum Genet 135(1):21–30CrossRefPubMedGoogle Scholar
  193. Shen Q, Little SC, Xu M, Haupt J, Ast C, Katagiri T, Mundlos S, Seemann P, Kaplan FS, Mullins MC (2009) The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMP-independent chondrogenesis and zebrafish embryo ventralization. J Clin Invest 119(11):3462–3472PubMedPubMedCentralGoogle Scholar
  194. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, Macfarlane PW, McKillop JH, Packard CJ (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 333(20):1301–1308CrossRefPubMedGoogle Scholar
  195. Smith LL, Gupta VA, Beggs AH (2014) Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. Hum Mol Genet ddu067Google Scholar
  196. Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ (2010) Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 6(10):e1001181CrossRefPubMedPubMedCentralGoogle Scholar
  197. Sotgia F, Bonuccelli G, Bedford M, Brancaccio A, Mayer U, Wilson MT, Campos-Gonzalez R, Brooks JW, Sudol M, Lisanti MP (2003) Localization of phospho-β-dystroglycan (pY892) to an intracellular vesicular compartment in cultured cells and skeletal muscle fibers in vivo. Biochemistry 42(23):7110–7123CrossRefPubMedGoogle Scholar
  198. Staffa JA, Chang J, Green L (2002) Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 346(7):539–540CrossRefPubMedGoogle Scholar
  199. Stamm D, Powell C, Stajich J, Zismann V, Stephan D, Chesnut B, Aylsworth A, Kahler S, Deak K, Gilbert J (2008a) Novel congenital myopathy locus identified in Native American Indians at 12q13. 13-14.1. Neurology 71(22):1764–1769CrossRefPubMedGoogle Scholar
  200. Stamm DS, Aylsworth AS, Stajich JM, Kahler SG, Thorne LB, Speer MC, Powell CM (2008b) Native American myopathy: congenital myopathy with cleft palate, skeletal anomalies, and susceptibility to malignant hyperthermia. Am J Med Genet A 146(14):1832–1841CrossRefGoogle Scholar
  201. Steffen LS, Guyon JR, Vogel ED, Howell MH, Zhou Y, Weber GJ, Zon LI, Kunkel LM (2007) The zebrafish runzel muscular dystrophy is linked to the titin gene. Dev Biol 309(2):180–192CrossRefPubMedPubMedCentralGoogle Scholar
  202. Stevens E, Carss KJ, Cirak S, Foley AR, Torelli S, Willer T, Tambunan DE, Yau S, Brodd L, Sewry CA (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 92(3):354–365CrossRefPubMedPubMedCentralGoogle Scholar
  203. Sugino S, Miyatake M, Ohtani Y, Yoshioka K, Miike T, Uchino M (1991) Vascular alterations in Fukuyama type congenital muscular dystrophy. Brain Dev 13(2):77–81CrossRefPubMedGoogle Scholar
  204. Sztal TE, Ruparelia AA, Williams C, Bryson-Richardson RJ (2016) Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish. JoVE 116Google Scholar
  205. Sztal TE, Sonntag C, Hall TE, Currie PD (2012) Epistatic dissection of laminin–receptor interactions in dystrophic zebrafish muscle. Hum Mol Genet 21(21):4718–4731CrossRefPubMedGoogle Scholar
  206. Sztal TE, Zhao M, Williams C, Oorschot V, Parslow AC, Giousoh A, Yuen M, Hall TE, Costin A, Ramm G, Bird P, Busch-Nentwich E, Stemple DL, Currie PD, Cooper ST, Laing NG, Nowak KJ, Bryson-Richardson RJ (2015) Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function. Acta Neuropathol 130(3):389–406CrossRefPubMedPubMedCentralGoogle Scholar
  207. Tan X, Rotllant J, Li H, DeDeyne P, Du SJ (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103(8):2713–2718CrossRefPubMedPubMedCentralGoogle Scholar
  208. Tawil R, van der Maarel SM, Tapscott SJ (2014) Facioscapulohumeral dystrophy: the path to consensus on pathophysiology. Skelet Muscle 4(1):12CrossRefPubMedPubMedCentralGoogle Scholar
  209. Telfer W, Busta A, Bonnemann C, Feldman E, Dowling J (2010) Zebrafish models of collagen VI-related myopathies. Hum Mol Genet 19(12):2433–2444CrossRefPubMedPubMedCentralGoogle Scholar
  210. Telfer WR, Nelson DD, Waugh T, Brooks SV, Dowling JJ (2012) Neb: a zebrafish model of nemaline myopathy due to nebulin mutation. Dis Model Mech 5(3):389–396CrossRefPubMedGoogle Scholar
  211. Thompson PD, Clarkson P, Karas RH (2003) Statin-associated myopathy. JAMA 289(13):1681–1690CrossRefPubMedGoogle Scholar
  212. Thornhill P, Bassett D, Lochmüller H, Bushby K, Straub V (2008) Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain 131(6):1551–1561CrossRefPubMedGoogle Scholar
  213. Todd PK, Ackall FY, Hur J, Sharma K, Paulson HL, Dowling JJ (2013) Transcriptional changes and developmental abnormalities in a zebrafish model of myotonic dystrophy type 1. DMM 012427Google Scholar
  214. Touhata K, Toyohara H, Mitani T, Kinoshita M, Satou M, Sakaguchi M (1995) Distribution of L-gulono-1, 4-lactone oxidase among fishes. Fish Sci 61(4):729–730CrossRefGoogle Scholar
  215. Toyohara H, Nakata T, Touhata K, Hashimoto H, Kinoshita M, Sakaguchi M, Nishikimi M, Yagi K, Wakamatsu Y, Ozato K (1996) Transgenic Expression ofl-Gulono-γ-lactone Oxidase in Medaka (Oryzias latipes), a Teleost Fish That Lacks This Enzyme Necessary forl-Ascorbic Acid Biosynthesis. Biochem Biophys Res Commun 223(3):650–653CrossRefPubMedGoogle Scholar
  216. Trinh LA, Hochgreb T, Graham M, Wu D, Ruf-Zamojski F, Jayasena CS, Saxena A, Hawk R, Gonzalez-Serricchio A, Dixson A (2011) A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev 25(21):2306–2320CrossRefPubMedCentralGoogle Scholar
  217. Ulbricht A, Arndt V, Höhfeld J (2013a) Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells. Comm Int Biol 6(4):e24925CrossRefGoogle Scholar
  218. Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P (2013b) Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 23(5):430–435CrossRefPubMedGoogle Scholar
  219. Vieira NM, Elvers I, Alexander MS, Moreira YB, Eran A, Gomes JP, Marshall JL, Karlsson EK, Verjovski-Almeida S, Lindblad-Toh K (2015) Jagged 1 rescues the duchenne muscular dystrophy phenotype. Cell 163(5):1204–1213CrossRefPubMedPubMedCentralGoogle Scholar
  220. Vieira NM, Naslavsky MS, Licinio L, Kok F, Schlesinger D, Vainzof M, Sanchez N, Kitajima JP, Gal L, Cavaçana N (2014) A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum Mol Genet ddu127Google Scholar
  221. Vieira NM, Spinazzola JM, Alexander MS, Moreira YB, Kawahara G, Gibbs DE, Mead LC, Verjovski-Almeida S, Zatz M, Kunkel LM (2017) Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy. Proc Natl Acad Sci 114(23):6080–6085CrossRefPubMedGoogle Scholar
  222. Völkers M, Dolatabadi N, Gude N, Most P, Sussman MA, Hassel D (2012) Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J Cell Sci 125(2):287–294CrossRefPubMedPubMedCentralGoogle Scholar
  223. Vorgerd M, van der Ven PF, Bruchertseifer V, Löwe T, Kley RA, Schröder R, Lochmüller H, Himmel M, Koehler K, Fürst DO (2005) A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 77(2):297–304CrossRefPubMedPubMedCentralGoogle Scholar
  224. Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, Guttridge D, Yang J, Harper SQ (2011) DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 69(3):540–552CrossRefPubMedGoogle Scholar
  225. Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 4:230–238CrossRefGoogle Scholar
  226. Wang H, Gilner JB, Bautch VL, Wang D-Z, Wainwright BJ, Kirby SL, Patterson C (2007) Wnt2 coordinates the commitment of mesoderm to hematopoietic, endothelial, and cardiac lineages in embryoid bodies. J Biol Chem 282(1):782–791CrossRefPubMedGoogle Scholar
  227. Waugh TA, Horstick E, Hur J, Jackson SW, Davidson AE, Li X, Dowling JJ (2014) Fluoxetine prevents dystrophic changes in a zebrafish model of Duchenne muscular dystrophy. Hum Mol Genet ddu185Google Scholar
  228. Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447(7140):87–91CrossRefPubMedGoogle Scholar
  229. Wiessner M, Roos A, Munn CJ, Viswanathan R, Whyte T, Cox D, Schoser B, Sewry C, Roper H, Phadke R (2017) Mutations in INPP5K, Encoding a Phosphoinositide 5-Phosphatase, Cause Congenital Muscular Dystrophy with Cataracts and Mild Cognitive Impairment. Am J Hum Genet 100(3):523–536CrossRefPubMedPubMedCentralGoogle Scholar
  230. Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter A-M, Hofker MH, Moerer P, Williamson R (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2(1):26–30CrossRefPubMedGoogle Scholar
  231. Wohlgemuth SL, Crawford BD, Pilgrim DB (2007) The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 303(2):483–492CrossRefPubMedGoogle Scholar
  232. Wood AJ, Müller JS, Jepson CD, Laval SH, Lochmüller H, Bushby K, Barresi R, Straub V (2011) Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Hum Mol Genet ddr426Google Scholar
  233. Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari V-L, Ravenscroft G, Todd EJ, Ceyhan-Birsoy O (2014) Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest 124(11):4693–4708CrossRefPubMedPubMedCentralGoogle Scholar
  234. Zervos A, Hunt K, Tong H, Avallone J, Morales J, Friedman N, Cohen B, Clark B, Guo S, Gazda H (2001) Clinical, genetic and histopathologic findings in two siblings with muscle-eye-brain disease. Eur J Ophthalmol 12(4):253–261CrossRefGoogle Scholar
  235. Zhang R, Yang J, Zhu J, Xu X (2009) Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere–membrane interaction, not sarcomere assembly. Hum Mol Genet 18(21):4130–4140CrossRefPubMedPubMedCentralGoogle Scholar
  236. Zoeller JJ, McQuillan A, Whitelock J, Ho S-Y, Iozzo RV (2008) A central function for perlecan in skeletal muscle and cardiovascular development. J Cell Biol 181(2):381–394CrossRefPubMedPubMedCentralGoogle Scholar
  237. Zou J, Tran D, Baalbaki M, Tang LF, Poon A, Pelonero A, Titus EW, Yuan C, Shi C, Patchava S (2015) An internal promoter underlies the difference in disease severity between N-and C-terminal truncation mutations of Titin in zebrafish. elife 4:e09406CrossRefPubMedPubMedCentralGoogle Scholar
  238. Zou P, Pinotsis N, Lange S, Song Y-H, Popov A, Mavridis I, Mayans OM, Gautel M, Wilmanns M (2006) Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439(7073):229–233CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Emily Claire Baxter
    • 1
  • Robert J. Bryson-Richardson
    • 1
  1. 1.School of Biological SciencesMonash UniversityMelbourneAustralia

Personalised recommendations