Advertisement

Zebrafish Angiogenesis and Valve Morphogenesis: Insights from Development and Disease Models

  • Matina Katraki-Pavlou
  • Dimitris Beis
Chapter

Abstract

Research on zebrafish embryonic development has already contributed to major breakthroughs in our understanding of how the cardiovascular system forms and functions. Zebrafish embryos are transparent, allowing noninvasive in vivo imaging. The advancements of high-resolution imaging and image analysis software, combined with the generation of tissue-specific transgenic lines and forward genetic screens, enabled the study of endothelial development at cellular resolution. Also, zebrafish embryos are not fully dependent on a functional cardiovascular system during the first few days of development since they get enough oxygen by passive diffusion. This advantage allowed the deciphering of the interplay between cardiac form and function as well as the identification of severe mutations of the heart and vessels. In this chapter, we highlight the experimental approaches and disease models used in zebrafish to study different aspects of the cardiovascular system.

Keywords

Angiogenesis Lymphangiogenesis Cardiac valve Hemodynamics Blood-brain barrier 

References

  1. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53.  https://doi.org/10.1038/nrn1824 CrossRefGoogle Scholar
  2. Adams RH, Wilkinson GA, Weiss C et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adams RH, Diella F, Hennig S et al (2001) The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104:57–69CrossRefPubMedGoogle Scholar
  4. Alders M, Hogan BM, Gjini E et al (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 41:1272–1274.  https://doi.org/10.1038/ng.484 CrossRefPubMedGoogle Scholar
  5. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17:1371–1380.  https://doi.org/10.1038/nm.2545 CrossRefPubMedGoogle Scholar
  6. Alon T, Hemo I, Itin A et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028CrossRefGoogle Scholar
  7. Alvarez Y, Cederlund ML, Cottell DC et al (2007) Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC Dev Biol 7:114.  https://doi.org/10.1186/1471-213X-7-114 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alvarez Y, Astudillo O, Jensen L et al (2009) Selective Inhibition of Retinal Angiogenesis by Targeting PI3 Kinase. PLoS One 4:e7867.  https://doi.org/10.1371/journal.pone.0007867 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aspalter IM, Gordon E, Dubrac A et al (2015) Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 6:8264.  https://doi.org/10.1038/ncomms8264 CrossRefGoogle Scholar
  10. Banerji S, Ni J, Wang S-X et al (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bartman T, Walsh EC, Wen K-K et al (2004) Early myocardial function affects endocardial cushion development in Zebrafish. PLoS Biol 2:e129.  https://doi.org/10.1371/journal.pbio.0020129 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Battegay EJ, Rupp J, Iruela-Arispe L et al (1994) PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 125:917–928CrossRefPubMedGoogle Scholar
  13. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Dev Camb Engl 125:1591–1598Google Scholar
  14. Benjamin LE, Golijanin D, Itin A et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165.  https://doi.org/10.1172/JCI5028 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bergametti F, Denier C, Labauge P et al (2005) Mutations within the Programmed Cell Death 10 Gene Cause Cerebral Cavernous Malformations. Am J Hum Genet 76:42–51CrossRefPubMedGoogle Scholar
  16. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603.  https://doi.org/10.1038/nrc2442 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Betz C, Lenard A, Belting H-G, Affolter M (2016) Cell behaviors and dynamics during angiogenesis. Development 143:2249–2260.  https://doi.org/10.1242/dev.135616 CrossRefPubMedGoogle Scholar
  18. Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia 56:699–708.  https://doi.org/10.1002/glia.20642 CrossRefPubMedGoogle Scholar
  19. Bussmann J, Bos FL, Urasaki A et al (2010) Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137:2653–2657.  https://doi.org/10.1242/dev.048207 CrossRefPubMedGoogle Scholar
  20. Cai X, Sezate SA, McGinnis JF (2012) Neovascularization: ocular diseases, animal models and therapies. Adv Exp Med Biol 723:245–252.  https://doi.org/10.1007/978-1-4614-0631-0_32 CrossRefPubMedGoogle Scholar
  21. Cao R, Jensen LDE, Söll I et al (2008) Hypoxia-induced retinal angiogenesis in Zebrafish as a model to study retinopathy. PLoS One 3:e2748.  https://doi.org/10.1371/journal.pone.0002748 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cao Z, Jensen LD, Rouhi P et al (2010) Hypoxia-induced retinopathy model in adult zebrafish. Nat Protoc 5:1903–1910.  https://doi.org/10.1038/nprot.2010.149 CrossRefPubMedGoogle Scholar
  23. Carmeliet P, Collen D (2000) Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol 190:387–405CrossRefGoogle Scholar
  24. Cermenati S, Moleri S, Cimbro S et al (2008) Sox18 and Sox7 play redundant roles in vascular development. Blood 111:2657–2666.  https://doi.org/10.1182/blood-2007-07-100412 CrossRefPubMedGoogle Scholar
  25. Chen J, Stahl A, Hellstrom A, Smith LE (2011) Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr 23:173–178.  https://doi.org/10.1097/MOP.0b013e3283423f35 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Coffin JD, Poole TJ (1991) Endothelial cell origin and migration in embryonic heart and cranial blood vessel development. Anat Rec 231:383–395.  https://doi.org/10.1002/ar.1092310312 CrossRefPubMedGoogle Scholar
  27. Connell F, Kalidas K, Ostergaard P et al (2010) Linkage and sequence analysis indicate that CCBE1 is mutated in recessively inherited generalised lymphatic dysplasia. Hum Genet 127:231–241.  https://doi.org/10.1007/s00439-009-0766-y CrossRefPubMedGoogle Scholar
  28. Corada M, Orsenigo F, Morini MF et al (2013) Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4:2609.  https://doi.org/10.1038/ncomms3609 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Costa G, Harrington KI, Lovegrove HE et al (2016) Asymmetric division coordinates collective cell migration in angiogenesis. Nat Cell Biol 18:1292–1301.  https://doi.org/10.1038/ncb3443 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Crawford Y, Ferrara N (2009) Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends Pharmacol Sci 30:624–630.  https://doi.org/10.1016/j.tips.2009.09.004 CrossRefPubMedGoogle Scholar
  31. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207CrossRefPubMedGoogle Scholar
  32. Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221.  https://doi.org/10.1016/j.devcel.2009.01.004 CrossRefPubMedGoogle Scholar
  33. Denier C, Goutagny S, Labauge P et al (2004) Mutations within the MGC4607 Gene Cause Cerebral Cavernous Malformations. Am J Hum Genet 74:326–337CrossRefPubMedPubMedCentralGoogle Scholar
  34. Eliceiri BP, Gonzalez AM, Baird A (2011) Zebrafish Model of the Blood-Brain Barrier: Morphological and Permeability Studies. Methods Mol Biol Clifton NJ 686:371–378.  https://doi.org/10.1007/978-1-60761-938-3_18 CrossRefGoogle Scholar
  35. Ellis LM, Liu W, Ahmad SA, et al (2001) Overview of angiogenesis: biologic implications for antiangiogenic therapy. In: Seminars in oncology. Elsevier, pp 94–104Google Scholar
  36. Erickson KK, Sundstrom JM, Antonetti DA (2007) Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 10:103–117.  https://doi.org/10.1007/s10456-007-9067-z CrossRefPubMedGoogle Scholar
  37. Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328:18–26.  https://doi.org/10.1016/j.canlet.2012.08.018 CrossRefPubMedGoogle Scholar
  38. Fajardo LF, Kwan HH, Kowalski J et al (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140:539PubMedPubMedCentralGoogle Scholar
  39. Feitsma H, Cuppen E (2008) Zebrafish as a Cancer Model. Mol Cancer Res 6:685–694.  https://doi.org/10.1158/1541-7786.MCR-07-2167 CrossRefPubMedGoogle Scholar
  40. Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364.  https://doi.org/10.1038/70928 CrossRefPubMedGoogle Scholar
  41. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25CrossRefPubMedGoogle Scholar
  42. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974.  https://doi.org/10.1038/nature04483 CrossRefPubMedGoogle Scholar
  43. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186.  https://doi.org/10.1056/NEJM197111182852108 CrossRefGoogle Scholar
  44. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31CrossRefPubMedGoogle Scholar
  45. Franco CA, Jones ML, Bernabeu MO et al (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13:e1002125.  https://doi.org/10.1371/journal.pbio.1002125 CrossRefPubMedPubMedCentralGoogle Scholar
  46. François M, Caprini A, Hosking B et al (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456:643–647.  https://doi.org/10.1038/nature07391 CrossRefPubMedGoogle Scholar
  47. Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58.  https://doi.org/10.1056/NEJMra021678 CrossRefPubMedGoogle Scholar
  48. Gebala V, Collins R, Geudens I et al (2016) Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 18:443–450.  https://doi.org/10.1038/ncb3320 CrossRefPubMedGoogle Scholar
  49. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177.  https://doi.org/10.1083/jcb.200302047 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Geudens I, Herpers R, Hermans K et al (2010) Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol 30:1695–1702CrossRefPubMedPubMedCentralGoogle Scholar
  51. Giuliano S, Pagès G (2013) Mechanisms of resistance to anti-angiogenesis therapies. Biochimie 95:1110–1119.  https://doi.org/10.1016/j.biochi.2013.03.002 CrossRefPubMedGoogle Scholar
  52. Goel S, Duda DG, Xu L et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121.  https://doi.org/10.1152/physrev.00038.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gore AV, Monzo K, Cha YR et al (2012) Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2:a006684.  https://doi.org/10.1101/cshperspect.a006684 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364CrossRefGoogle Scholar
  55. Hartsock A, Lee C, Arnold V, Gross JM (2014) In vivo analysis of hyaloid vasculature morphogenesis in zebrafish: A role for the lens in maturation and maintenance of the hyaloid. Dev Biol 394:327–339.  https://doi.org/10.1016/j.ydbio.2014.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Heckel E, Boselli F, Roth S et al (2015) Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during Heart Valve Development. Curr Biol CB 25:1354–1361.  https://doi.org/10.1016/j.cub.2015.03.038 CrossRefPubMedGoogle Scholar
  57. Heilmann S, Ratnakumar K, Langdon E et al (2015) A quantitative system for studying metastasis using transparent Zebrafish. Cancer Res 75:4272–4282.  https://doi.org/10.1158/0008-5472.CAN-14-3319 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Herbert SP, Stainier DYR (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12:551–564.  https://doi.org/10.1038/nrm3176 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Herbert SP, Huisken J, Kim TN et al (2009) Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326:294–298.  https://doi.org/10.1126/science.1178577 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hermkens DMA, van Impel A, Urasaki A et al (2015) Sox7 controls arterial specification in conjunction with hey2 and efnb2 function. Development 142:1695–1704.  https://doi.org/10.1242/dev.117275 CrossRefPubMedGoogle Scholar
  61. Herpers R, van de Kamp E, Duckers HJ, Schulte-Merker S (2008) Redundant roles for sox7 and sox18 in arteriovenous specification in zebrafish. Circ Res 102:12–15.  https://doi.org/10.1161/CIRCRESAHA.107.166066 CrossRefPubMedGoogle Scholar
  62. Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S (2008) ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet 17:2424–2432.  https://doi.org/10.1093/hmg/ddn142 CrossRefPubMedGoogle Scholar
  63. Hogan BM, Herpers R, Witte M et al (2009) Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Dev Camb Engl 136:4001–4009.  https://doi.org/10.1242/dev.039990 CrossRefGoogle Scholar
  64. Hove JR, Köster RW, Forouhar AS et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177.  https://doi.org/10.1038/nature01282 CrossRefPubMedGoogle Scholar
  65. Hurlstone AFL, Haramis A-PG, Wienholds E et al (2003) The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425:633–637.  https://doi.org/10.1038/nature02028 CrossRefPubMedGoogle Scholar
  66. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230:278–301.  https://doi.org/10.1006/dbio.2000.9995 CrossRefPubMedGoogle Scholar
  67. Isogai S, Lawson ND, Torrealday S et al (2003) Angiogenic network formation in the developing vertebrate trunk. Dev Camb Engl 130:5281–5290.  https://doi.org/10.1242/dev.00733 CrossRefGoogle Scholar
  68. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617.  https://doi.org/10.1056/NEJMra0801537 CrossRefPubMedGoogle Scholar
  69. Jensen LD, Cao R, Cao Y (2009) In vivo angiogenesis and lymphangiogenesis models. Curr Mol Med 9:982–991CrossRefPubMedGoogle Scholar
  70. Jeong J-Y, Kwon H-B, Ahn J-C et al (2008) Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull 75:619–628.  https://doi.org/10.1016/j.brainresbull.2007.10.043 CrossRefPubMedGoogle Scholar
  71. Jin S-W, Beis D, Mitchell T et al (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132:5199–5209.  https://doi.org/10.1242/dev.02087 CrossRefGoogle Scholar
  72. Kalaiarasi S, Arjun P, Nandhagopal S et al (2016) Development of biocompatible nanogel for sustained drug release by overcoming the blood brain barrier in zebrafish model. J Appl Biomed 14:157–169.  https://doi.org/10.1016/j.jab.2016.01.004 CrossRefGoogle Scholar
  73. Kalogirou S, Malissovas N, Moro E et al (2014) Intracardiac flow dynamics regulate atrioventricular valve morphogenesis. Cardiovasc Res 104:49–60.  https://doi.org/10.1093/cvr/cvu186 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kamei M, Brian Saunders W, Bayless KJ et al (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456.  https://doi.org/10.1038/nature04923 CrossRefPubMedGoogle Scholar
  75. Kanai-Azuma M, Kanai Y, Gad JM et al (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Dev Camb Engl 129:2367–2379Google Scholar
  76. Kaufman R, Weiss O, Sebbagh M et al (2015) Development and origins of Zebrafish ocular vasculature. BMC Dev Biol 15:18.  https://doi.org/10.1186/s12861-015-0066-9 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kim SS, Im SH, Yang JY et al (2017) Zebrafish as a screening model for testing the permeability of blood–brain barrier to small molecules. Zebrafish 14:322–330.  https://doi.org/10.1089/zeb.2016.1392 CrossRefGoogle Scholar
  78. Kitambi SS, McCulloch KJ, Peterson RT, Malicki JJ (2009) Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 126:464–477.  https://doi.org/10.1016/j.mod.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kochhan E, Lenard A, Ellertsdottir E et al (2013) Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PLoS One 8:e75060.  https://doi.org/10.1371/journal.pone.0075060 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kohli V, Schumacher JA, Desai SP et al (2013) Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell 25:196–206.  https://doi.org/10.1016/j.devcel.2013.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Koltowska K, Betterman KL, Harvey NL, Hogan BM (2013) Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development 140:1857–1870.  https://doi.org/10.1242/dev.089565 CrossRefPubMedGoogle Scholar
  82. Koltowska K, Lagendijk AK, Pichol-Thievend C et al (2015) Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish. Cell Rep 13:1828–1841.  https://doi.org/10.1016/j.celrep.2015.10.055 CrossRefPubMedGoogle Scholar
  83. Krueger J, Liu D, Scholz K et al (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Dev Camb Engl 138:2111–2120.  https://doi.org/10.1242/dev.063933 CrossRefGoogle Scholar
  84. Küchler AM, Gjini E, Peterson-Maduro J et al (2006) Development of the zebrafish lymphatic system requires Vegfc signaling. Curr Biol 16:1244–1248.  https://doi.org/10.1016/j.cub.2006.05.026 CrossRefPubMedGoogle Scholar
  85. Kwong TQ, Mohamed M (2014) Anti-vascular endothelial growth factor therapies in ophthalmology: current use, controversies and the future: anti-vascular endothelial growth factor therapies. Br J Clin Pharmacol 78:699–706.  https://doi.org/10.1111/bcp.12371 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Laberge-le Couteulx S, Jung HH, Labauge P et al (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189–193.  https://doi.org/10.1038/13815 CrossRefPubMedGoogle Scholar
  87. Lagendijk AK, Goumans MJ, Burkhard SB, Bakkers J (2011) MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. Circ Res 109:649–657.  https://doi.org/10.1161/CIRCRESAHA.111.247635 CrossRefPubMedGoogle Scholar
  88. Lam SH, Wu YL, Vega VB et al (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24:73–75.  https://doi.org/10.1038/nbt1169 CrossRefPubMedGoogle Scholar
  89. Larrivée B, Prahst C, Gordon E et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell 22:489–500.  https://doi.org/10.1016/j.devcel.2012.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318.  https://doi.org/10.1006/dbio.2002.0711 CrossRefGoogle Scholar
  91. Lawson ND, Scheer N, Pham VN et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683PubMedGoogle Scholar
  92. Lawson ND, Vogel AM, Weinstein BM (2002) sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136CrossRefGoogle Scholar
  93. Lawson ND, Mugford JW, Diamond BA, Weinstein BM (2003) phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev 17:1346–1351CrossRefPubMedPubMedCentralGoogle Scholar
  94. Le Guen L, Karpanen T, Schulte D et al (2014) Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141:1239–1249.  https://doi.org/10.1242/dev.100495 CrossRefPubMedGoogle Scholar
  95. Mably JD, Chuang LP, Serluca FC et al (2006) Santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Dev Camb Engl 133:3139–3146.  https://doi.org/10.1242/dev.02469 CrossRefGoogle Scholar
  96. Macek Jilkova Z, Lisowska J, Manet S et al (2014) CCM proteins control endothelial β1 integrin dependent response to shear stress. Biol Open 3:1228–1235.  https://doi.org/10.1242/bio.201410132 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Merrigan SL, Kennedy BN (2017) Vitamin D receptor agonists regulate ocular developmental angiogenesis and modulate expression of dre-miR-21 and VEGF. Br J Pharmacol 174:2636–2651.  https://doi.org/10.1111/bph.13875 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Mickoleit M, Schmid B, Weber M et al (2014) High-resolution reconstruction of the beating zebrafish heart. Nat Methods 11:919–922.  https://doi.org/10.1038/nmeth.3037 CrossRefPubMedGoogle Scholar
  99. Moro E, Ozhan-Kizil G, Mongera A et al (2012) In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 366:327–340.  https://doi.org/10.1016/j.ydbio.2012.03.023 CrossRefPubMedGoogle Scholar
  100. Nagasawa-Masuda A, Terai K (2016) ERK activation in endothelial cells is a novel marker during neovasculogenesis. Genes Cells 21:1164–1175.  https://doi.org/10.1111/gtc.12438 CrossRefPubMedGoogle Scholar
  101. Nedvetsky PI, Zhao X, Mathivet T et al (2016) cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner. Development 143:3582–3590.  https://doi.org/10.1242/dev.134767 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Neuwelt E, Abbott NJ, Abrey L et al (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96.  https://doi.org/10.1016/S1474-4422(07)70326-5 CrossRefPubMedGoogle Scholar
  103. Nicenboim J, Malkinson G, Lupo T et al (2015) Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522:56–61.  https://doi.org/10.1038/nature14425 CrossRefPubMedGoogle Scholar
  104. Nicoli S, Standley C, Walker P et al (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464:1196–1200.  https://doi.org/10.1038/nature08889 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Nishida N, Yano H, Nishida T et al (2006) Angiogenesis in Cancer. Vasc Health Risk Manag 2:213–219CrossRefPubMedPubMedCentralGoogle Scholar
  106. Nishimura Y, Yata K, Nomoto T et al (2013) Identification of a novel indoline derivative for in vivo fluorescent imaging of blood-brain barrier disruption in animal models. ACS Chem Neurosci 4:1183–1193.  https://doi.org/10.1021/cn400010t CrossRefPubMedPubMedCentralGoogle Scholar
  107. Novodvorsky P, Chico TJA (2014) The role of the transcription factor KLF2 in vascular development and disease. Prog Mol Biol Transl Sci 124:155–188.  https://doi.org/10.1016/B978-0-12-386930-2.00007-0 CrossRefPubMedGoogle Scholar
  108. Ny A, Koch M, Schneider M et al (2005) A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 11:998.  https://doi.org/10.1038/nm1285 CrossRefPubMedGoogle Scholar
  109. Okuda KS, Astin JW, Misa JP et al (2012) lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 139:2381–2391.  https://doi.org/10.1242/dev.077701 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pan B, Shen J, Cao J et al (2015) Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci Rep 5.  https://doi.org/10.1038/srep16053
  111. Papadimitriou E, Pantazaka E, Castana P et al (2016) Pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta as regulators of angiogenesis and cancer. Biochim Biophys Acta 1866:252–265.  https://doi.org/10.1016/j.bbcan.2016.09.007 CrossRefPubMedGoogle Scholar
  112. Papakyriakou A, Kefalos P, Sarantis P et al (2014) A zebrafish in vivo phenotypic assay to identify 3-aminothiophene-2-carboxylic acid-based angiogenesis inhibitors. Assay Drug Dev Technol 12:527–535.  https://doi.org/10.1089/adt.2014.606 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pendeville H, Winandy M, Manfroid I et al (2008) Zebrafish Sox7 and Sox18 function together to control arterial-venous identity. Dev Biol 317:405–416.  https://doi.org/10.1016/j.ydbio.2008.01.028 CrossRefPubMedGoogle Scholar
  114. Peshkovsky C, Totong R, Yelon D (2011) Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev Dyn 240:446–456.  https://doi.org/10.1002/dvdy.22526 CrossRefPubMedGoogle Scholar
  115. Pestel J, Ramadass R, Gauvrit S et al (2016) Real-time 3D visualization of cellular rearrangements during cardiac valve formation. Development 143:2217–2227.  https://doi.org/10.1242/dev.133272 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887.  https://doi.org/10.1016/j.cell.2011.08.039 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684.  https://doi.org/10.1038/nm0603-677 CrossRefGoogle Scholar
  118. Quillien A, Moore JC, Shin M et al (2014) Distinct Notch signaling outputs pattern the developing arterial system. Dev Camb Engl 141:1544–1552.  https://doi.org/10.1242/dev.099986 CrossRefGoogle Scholar
  119. Renz M, Otten C, Faurobert E et al (2015) Regulation of β1 integrin-Klf2-mediated angiogenesis by CCM proteins. Dev Cell 32:181–190.  https://doi.org/10.1016/j.devcel.2014.12.016 CrossRefPubMedGoogle Scholar
  120. Rezzola S, Paganini G, Semeraro F et al (2016) Zebrafish ( Danio rerio ) embryo as a platform for the identification of novel angiogenesis inhibitors of retinal vascular diseases. Biochim Biophys Acta (BBA) – Mol Basis Dis 1862:1291–1296.  https://doi.org/10.1016/j.bbadis.2016.04.009 CrossRefGoogle Scholar
  121. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674.  https://doi.org/10.1038/386671a0 CrossRefGoogle Scholar
  122. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91.  https://doi.org/10.1146/annurev.cb.11.110195.000445 CrossRefPubMedGoogle Scholar
  123. Rosen LS (2002) Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control J Moffitt Cancer Cent 9:36–44CrossRefGoogle Scholar
  124. Saaristo A, Karkkainen MJ, Alitalo K (2002) Insights into the molecular pathogenesis and targeted treatment of lymphedema. Ann N Y Acad Sci 979:94–110CrossRefPubMedGoogle Scholar
  125. Sacilotto N, Monteiro R, Fritzsche M et al (2013) Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc Natl Acad Sci 110:11893–11898.  https://doi.org/10.1073/pnas.1300805110 CrossRefPubMedGoogle Scholar
  126. Saint-Geniez M, D’amore PA (2004) Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 48:1045–1058.  https://doi.org/10.1387/ijdb.041895ms CrossRefPubMedGoogle Scholar
  127. Sauteur L, Krudewig A, Herwig L et al (2014) Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep 9:504–513.  https://doi.org/10.1016/j.celrep.2014.09.024 CrossRefPubMedGoogle Scholar
  128. Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193:607–618.  https://doi.org/10.1083/jcb.201012094 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Seghezzi G, Patel S, Ren CJ et al (1998) Fibroblast Growth Factor-2 (FGF-2) induces Vascular Endothelial Growth Factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673CrossRefPubMedPubMedCentralGoogle Scholar
  130. Semo J, Nicenboim J, Yaniv K (2016) Development of the lymphatic system: new questions and paradigms. Development 143:924–935.  https://doi.org/10.1242/dev.132431 CrossRefPubMedGoogle Scholar
  131. Serbedzija GN, Flynn E, Willett CE (1999) Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3:353–359CrossRefPubMedGoogle Scholar
  132. Shin M, Beane TJ, Quillien A et al (2016) Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development 143:3796–3805.  https://doi.org/10.1242/dev.137919 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Shin M, Male I, Beane TJ et al (2017) Correction: Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 144:531–531.  https://doi.org/10.1242/dev.148569 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Shui Y-B, Wang X, Hu JS et al (2003) Vascular endothelial growth factor expression and signaling in the lens. Investig opthalmology. Vis Sci 44:3911.  https://doi.org/10.1167/iovs.02-1226 CrossRefGoogle Scholar
  135. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781–784.  https://doi.org/10.1038/nature05577 CrossRefPubMedGoogle Scholar
  136. Smith KA, Joziasse IC, Chocron S et al (2009) Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 119:3062–3069.  https://doi.org/10.1161/CIRCULATIONAHA.108.843714 CrossRefPubMedGoogle Scholar
  137. Spitsbergen JM, Tsai HW, Reddy A et al (2000) Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N’-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28:716–725.  https://doi.org/10.1177/019262330002800512 CrossRefPubMedGoogle Scholar
  138. Srinivasan RS, Dillard ME, Lagutin OV et al (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Amp Dev 21:2422–2432.  https://doi.org/10.1101/gad.1588407 CrossRefGoogle Scholar
  139. Stainier DY, Weinstein BM, Detrich H 3rd et al (1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150PubMedGoogle Scholar
  140. Steed E, Faggianelli N, Roth S et al (2016) klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis. Nat Commun 7:11646.  https://doi.org/10.1038/ncomms11646 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588.  https://doi.org/10.1161/CIRCRESAHA.108.188805 CrossRefPubMedGoogle Scholar
  142. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476.  https://doi.org/10.1016/j.cell.2010.01.045 CrossRefPubMedGoogle Scholar
  143. Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6:339–346.  https://doi.org/10.1089/zeb.2009.0607 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Teng Y, Xie X, Walker S et al (2013) Evaluating human cancer cell metastasis in zebrafish. BMC Cancer 13:453.  https://doi.org/10.1186/1471-2407-13-453 CrossRefPubMedPubMedCentralGoogle Scholar
  145. van den Driesche S, Mummery CL, Westermann CJ (2003) Hereditary hemorrhagic telangiectasia: an update on transforming growth factor β signaling in vasculogenesis and angiogenesis. Cardiovasc Res 58:20–31CrossRefPubMedGoogle Scholar
  146. Vermot J, Forouhar AS, Liebling M et al (2009) Reversing Blood Flows Act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7:e1000246.  https://doi.org/10.1371/journal.pbio.1000246 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Wang HU, Chen Z-F, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753CrossRefPubMedGoogle Scholar
  148. Weinstein BM (1999) What guides early embryonic blood vessel formation? Dev Dyn 215:2–11. https://doi.org/10.1002/(SICI)1097-0177(199905)215:1<2::AID-DVDY2>3.0.CO;2-UCrossRefPubMedGoogle Scholar
  149. Weinstein BM (2002) Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol 12:439–445CrossRefPubMedGoogle Scholar
  150. White RM, Sessa A, Burke C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189.  https://doi.org/10.1016/j.stem.2007.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  151. White R, Rose K, Zon L (2013) Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13:624–636.  https://doi.org/10.1038/nrc3589 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778CrossRefPubMedGoogle Scholar
  153. Wigle JT, Harvey N, Detmar M et al (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513CrossRefPubMedPubMedCentralGoogle Scholar
  154. Wilting J, Aref Y, Huang R et al (2006) Dual origin of avian lymphatics. Dev Biol 292:165–173.  https://doi.org/10.1016/j.ydbio.2005.12.043 CrossRefPubMedGoogle Scholar
  155. Xie J, Farage E, Sugimoto M, Anand-Apte B (2010) A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev Biol 10:76.  https://doi.org/10.1186/1471-213X-10-76 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Yang B, Kang H, Fung A et al (2014) The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediat Inflamm 2014:1–12.  https://doi.org/10.1155/2014/623759 CrossRefGoogle Scholar
  157. Yang T, Martin P, Fogarty B et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32:2003–2014.  https://doi.org/10.1007/s11095-014-1593-y CrossRefPubMedPubMedCentralGoogle Scholar
  158. Yaniv K, Isogai S, Castranova D et al (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716.  https://doi.org/10.1038/nm1427 CrossRefPubMedGoogle Scholar
  159. Yen J, White RM, Stemple DL (2014) Zebrafish models of cancer: progress and future challenges. Curr Opin Genet Dev 24:38–45.  https://doi.org/10.1016/j.gde.2013.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yoo SY, Kwon SM (2013) Angiogenesis and its therapeutic opportunities. Mediat Inflamm 2013:127170.  https://doi.org/10.1155/2013/127170 CrossRefGoogle Scholar
  161. Yoruk B, Gillers BS, Chi NC, Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362:121–131.  https://doi.org/10.1016/j.ydbio.2011.12.006 CrossRefPubMedGoogle Scholar
  162. Zhong TP, Rosenberg M, Mohideen MA et al (2000) gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824CrossRefPubMedGoogle Scholar
  163. Zhou Z, Rawnsley DR, Goddard LM et al (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32:168–180.  https://doi.org/10.1016/j.devcel.2014.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201.  https://doi.org/10.1016/j.neuron.2008.01.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Zebrafish Disease Models LaboratoryBiomedical Research Foundation, Academy of AthensAthensGreece

Personalised recommendations