Diversified Sex Characteristics Developments in Teleost Fishes: Implication for Evolution of Androgen Receptor (AR) Gene Function

  • Yukiko OginoEmail author
  • Gen Yamada
  • Taisen Iguchi


Gene duplication is a dominant driving force of evolution. The steroid hormone receptor (SR) gene family is thought to have arisen from gene duplication. However, the molecular events which produce new protein functions after genome duplication have not been fully understood. Teleost fishes present an excellent model to investigate an accurate evolutionary history of protein function after whole genome duplication (WGD), because the teleost-specific WGD (TSGD) 350 million years ago (Ma) resulted in a variety of duplicated genes that exist in modern fishes. We focused on the androgen receptor (AR) gene, since two different subtype genes, ARα and ARβ, were generated in the TSGD. It was previously shown that ARβ has retained the ancestral function, whereas ARα has evolved as a hyperactive form of AR in the teleost lineage. Such evolutionary novelty of protein function in AR genes might facilitate the emergence of divergent sex characteristics in the teleost lineage. Results of the combined functional and 3D analyses of medaka ARs identified the substitutions that led to changes in protein structure and function between medaka ARα and ARβ. By tracing evolutionary changes in protein function of ARs in teleost lineage, we recently revealed that the substitutions generating a new functionality of teleost ARα were fixed in the teleost genome after the divergence of the Elopomorpha lineage. Such findings would provide an historical explanation for the retention of the duplicated AR copies in the euteleost genome. We also highlighted the molecular mechanisms of secondary sex characteristics development in teleost fishes, using Western mosquitofish and medaka as models.


Androgen Sex characteristics Gonopodium Papillary processes Androgen receptor Whole genome duplication 



This study was supported by Grants-in-Aid for Scientific Research (KAKENHI) [15K07138 (Y.O.), 15H04395 (Y.O.), 15H04396 (Y.O., T.I.)] from the Japan Society for the Promotion of Science (JSPS); UK-Japan Research Collaboration Grants (T.I.) from the Ministry of the Environment, Japan, and the Department for Environment, Food and Rural Affairs (DEFRA), UK; the NIBB Cooperative Research Program (Y.O.) from National Institute for Basic Biology; The 2nd Women Researchers Promotion Program (Y.O.), Support for childbirth and childcare in Women Researchers Promotion Program (Y.O.) and Support for Women Returning from Maternity and Parental Leave from Kyushu University (Y.O.); The Naito Foundation (Y.O.). We thank Dr. Mike Roberts, DEFRA, UK, for his critical reading of this manuscript.


  1. Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of Salmonid fishes. In: Turner JB (ed) Evolutionary genetics of fishes. Plenum Publishing Corp., New York, pp 1–53Google Scholar
  2. Angus RA, McNatt HB, Howell WM, Peoples SD (2001) Gonopodium development in normal male and 11-ketotestosterone-treated female mosquitofish (Gambusia affinis): A quantitative study using computer image analysis. Gen Comp Endocrinol 123(2):222–234CrossRefPubMedGoogle Scholar
  3. Baker ME (1997) Steroid receptor phylogeny and vertebrate origins. Mol Cell Endocrinol 135(2):101–107CrossRefPubMedGoogle Scholar
  4. Batty J, Lim R (1999) Morphological and reproductive characteristics of male mosquitofish (Gambusia affinis holbrooki) inhabiting sewage-contaminated waters in New South Wales, Australia. Arch Environ Contam Toxicol 36(3):301–307CrossRefPubMedGoogle Scholar
  5. Borg B (1994) Androgens in teleost fishes. Comp Biochem Physiol 109C(3):219–245Google Scholar
  6. Brockmeier EK, Ogino Y, Iguchi T, Barber DS, Denslow ND (2013) Effects of 17β-trenbolone on Eastern and Western mosquitofish (Gambusia holbrooki and G. affinis) anal fin growth and gene expression patterns. Aquat Toxicol 128-129:163–170CrossRefPubMedGoogle Scholar
  7. Brunet FG, Roest Crollius H, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23(9):1808–1816CrossRefPubMedGoogle Scholar
  8. Chiu CH, Dewar K, Wagner GP, Takahashi K, Ruddle F, Ledje C, Bartsch P, Scemama JL, Stellwag E, Fried C, Prohaska SJ, Stadler PF, Amemiya CT (2004) Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome Res 14(1):11–17CrossRefPubMedPubMedCentralGoogle Scholar
  9. Douard V, Brunet F, Boussau B, Ahrens I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y (2008) The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? BMC Evol Biol 8(1):336CrossRefPubMedPubMedCentralGoogle Scholar
  10. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545PubMedPubMedCentralGoogle Scholar
  11. Hawkins MB, Thornton JW, Crews D, Skipper JK, Dotte A, Thomas P (2000) Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc Natl Acad Sci U S A 97(20):10751–10756CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hishida T-O, Kawamoto N (1970) Androgenic and male Inducing effects of 11 ketotestosterone on a teleost the medaka Oryzias-latipes. J Exp Zool 173(3):279–284CrossRefGoogle Scholar
  13. Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59(2):190–203CrossRefPubMedGoogle Scholar
  14. Hossain MS, Larsson A, Scherbak N, Olsson PE, Orban L (2008) Zebrafish androgen receptor: isolation, molecular, and biochemical characterization. Biol Reprod 78(2):361–369CrossRefPubMedGoogle Scholar
  15. Howell WM, Black DA, Bortone SA (1980) Abnormal expression of secondary sex characters in a population of mosquitofish, Gambusia affinis holbrooki: Evidence for environmentally-induced masculinization. Copeia 4:676–681CrossRefGoogle Scholar
  16. Huang BF, Sun YL, Wu FR, Liu ZH, Wang ZJ, Luo LF, Zhang YG, Wang DS (2011) Isolation, sequence analysis, and characterization of androgen receptor in Southern catfish, Silurus meridionalis. Fish Physiol Biochem 37(3):593–601CrossRefPubMedGoogle Scholar
  17. Hughes AL (2002) Adaptive evolution after gene duplication. Trends Genet 18(9):433–434CrossRefPubMedGoogle Scholar
  18. Ikeuchi T, Todo T, Kobayashi T, Nagahama Y (1999) cDNA cloning of a novel androgen receptor subtype. J Biol Chem 274(36):25205–25209CrossRefPubMedGoogle Scholar
  19. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Mol Phylogenet Evol 26(1):110–120CrossRefPubMedGoogle Scholar
  20. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957CrossRefPubMedGoogle Scholar
  21. Kikugawa K, Katoh K, Kuraku S, Sakurai H, Ishida O, Iwabe N, Miyata T (2004) Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes. BMC Biol 2(1):3CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kime DE (1993) ‘Classical’ and ‘non-classical’ reproductive steroids in fish. Rev Fish Biol Fish 3:160–180CrossRefGoogle Scholar
  23. Kuntz A (1914) Notes on the habits, morphology of the reproductive organs, and embryology of the viviparous fish Gambusia affinis. Bull US Bur Fish 33:177–190Google Scholar
  24. Laudet V (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19(3):207–226CrossRefPubMedGoogle Scholar
  25. Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20(11):544–549CrossRefPubMedGoogle Scholar
  26. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miura T, Yamauchi K, Takahashi H, Nagahama Y (1991) Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc Natl Acad Sci U S A 88(13):5774–5778CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miya M, Kawaguchi A, Nishida M (2001) Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol 18(11):1993–2009CrossRefPubMedGoogle Scholar
  29. Miyagawa S, Satoh Y, Haraguchi R, Suzuki K, Iguchi T, Taketo MM, Nakagata N, Matsumoto T, Takeyama K, Kato S, Yamada G (2009) Genetic interactions of the androgen and Wnt/β-catenin pathways for the masculinization of external genitalia. Mol Endocrinol 23(6):871–880CrossRefPubMedPubMedCentralGoogle Scholar
  30. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A 109(34):13698–13703CrossRefPubMedPubMedCentralGoogle Scholar
  31. Neumann CJ, Grandel H, Gaffield W, Schulte-Merker S, Nusslein-Volhard C (1999) Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development 126(21):4817–4826PubMedGoogle Scholar
  32. O’Shaughnessy KL, Dahn RD, Cohn MJ (2015) Molecular development of chondrichthyan claspers and the evolution of copulatory organs. Nat Commun 6:6698CrossRefPubMedPubMedCentralGoogle Scholar
  33. OECD (2004) OECD draft report of the initial work towards the validation of the fish screening assay for the detection of endocrine active substances: Phase 1A. OECD, ParisGoogle Scholar
  34. Offen N, Blum N, Meyer A, Begemann G (2008) Fgfr1 signalling in the development of a sexually selected trait in vertebrates, the sword of swordtail fish. BMC Dev Biol 8:98CrossRefPubMedPubMedCentralGoogle Scholar
  35. Offen N, Kang JH, Meyer A, Begemann G (2013) Retinoic acid is involved in the metamorphosis of the anal fin into an intromittent organ, the gonopodium, in the green swordtail (Xiphophorus hellerii). PLoS One 8(10):e77580CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ogino Y, Katoh H, Yamada G (2004) Androgen dependent development of a modified anal fin, gonopodium, as a model to understand the mechanism of secondary sexual character expression in vertebrates. FEBS Lett 575(1–3):119–126CrossRefPubMedGoogle Scholar
  37. Ogino Y, Katoh H, Kuraku S, Yamada G (2009) Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates. Endocrinology 150(12):5415–5427CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ogino Y, Miyagawa S, Katoh H, Prins GS, Iguchi T, Yamada G (2011) Essential functions of androgen signaling emerged through the developmental analysis of vertebrate sex characteristics. Evol Dev 13(3):315–325CrossRefPubMedGoogle Scholar
  39. Ogino Y, Hirakawa I, Inohaya K, Sumiya E, Miyagawa S, Denslow N, Yamada G, Tatarazako N, Iguchi T (2014) Bmp7 and Lef1 are the downstream effectors of androgen signaling in androgen-induced sex characteristics development in medaka. Endocrinology 155(2):449–462CrossRefPubMedGoogle Scholar
  40. Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T (2016) Neofunctionalization of androgen receptor by gain-of-function mutations in teleost fish lineage. Mol Biol Evol 33(1):228–244CrossRefPubMedGoogle Scholar
  41. Ohno S (1970) Evolution of gene duplication. Springer, New YorkCrossRefGoogle Scholar
  42. Okada YK, Yamashita H (1994) Experimental investigation of the manifestation of secondary sexual characters in fish, using the medaka, Oryzias latipes (Temmick and Schlegel) as material. J Fac Sci Tokyo Imp Univ Sec IV Zool 6:383–437Google Scholar
  43. Orlando EF, Davis WP, Guillette LJ Jr (2002) Aromatase activity in the ovary and brain of the eastern mosquitofish (Gambusia holbrooki) exposed to paper mill effluent. Environ Health Perspect 110(Suppl 3):429–433CrossRefPubMedPubMedCentralGoogle Scholar
  44. Parks LG, Lambright CS, Orlando EF, Guillette LJ Jr, Ankley GT, Gray LE Jr (2001) Masculinization of female mosquitofish in Kraft mill effluent-contaminated Fenholloway River water is associated with androgen receptor agonist activity. Toxicol Sci 62(2):257–267CrossRefPubMedGoogle Scholar
  45. Peden AE (1972) The function of gonopodial parts and behavioral pattern during copulation by Gambusia (Poeciliidae). Can J Zool 50:955–967CrossRefGoogle Scholar
  46. Pihlajamaa P, Sahu B, Lyly L, Aittomaki V, Hautaniemi S, Janne OA (2014) Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs. EMBO J 33(4):312–326PubMedPubMedCentralGoogle Scholar
  47. Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3(11):827–837CrossRefGoogle Scholar
  48. Pu Y, Huang L, Birch L, Prins GS (2007) Androgen regulation of prostate morphoregulatory gene expression: Fgf10-dependent and -independent pathways. Endocrinology 148(4):1697–1706CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rosa-Molinar E, Burke AC (2002) Starting from fins: parallelism in the evolution of limbs and genitalia: the fin-to-genitalia transition. Evol Dev 4(2):124–126CrossRefPubMedGoogle Scholar
  50. Rosa-Molinar E, Hendricks SE, Rodriguez-Sierra JF, Fritzsch B (1994) Development of the anal fin appendicular support in the western mosquitofish, Gambusia affinis affinis (Baird and Girard, 1854): a reinvestigation and reinterpretation. Acta Anat (Basel) 151(1):20–35CrossRefGoogle Scholar
  51. Rosa-Molinar E, Fritzsch B, Hendricks SE (1996) Organizational-activational concept revisited: sexual differentiation in an atherinomorph teleost. Horm Behav 30(4):563–575CrossRefPubMedGoogle Scholar
  52. Rosen DE, Gordon M (1953) Functional anatomy and evolution of male genitalia in poeciliid fishes. Zoologica 38:1–52Google Scholar
  53. Sato Y, Nisida M (2010) Teleost fish with specific genome duplication as unique models of vertebrate evolution. Environ Biol Fish 88:169–188CrossRefGoogle Scholar
  54. Sone K, Hinago M, Itamoto M, Katsu Y, Watanabe H, Urushitani H, Tooi O, Guillette LJ Jr, Iguchi T (2005) Effects of an androgenic growth promoter 17β-trenbolone on masculinization of Mosquitofish (Gambusia affinis affinis). Gen Comp Endocrinol 143(2):151–160CrossRefPubMedGoogle Scholar
  55. Sperry TS, Thomas P (1999) Identification of two nuclear androgen receptors in kelp bass (Paralabrax clathratus) and their binding affinities for xenobiotics: comparison with Atlantic croaker (Micropogonias undulatus) androgen receptors. Biol Reprod 61(4):1152–1161CrossRefPubMedGoogle Scholar
  56. Takeo J, Yamashita S (1999) Two distinct isoforms of cDNA encoding rainbow trout androgen receptors. J Biol Chem 274(9):5674–5680CrossRefPubMedGoogle Scholar
  57. Thornton JW, Kelley DB (1998) Evolution of the androgen receptor: structure-function implications. BioEssays 20(10):860–869CrossRefPubMedGoogle Scholar
  58. Toft G, Edwards TM, Baatrup E, Guillette LJ Jr (2003) Disturbed sexual characteristics in male mosquitofish (Gambusia holbrooki) from a lake contaminated with endocrine disruptors. Environ Health Perspect 111(5):695–701CrossRefPubMedPubMedCentralGoogle Scholar
  59. Turner CL (1941a) Gonopodial characteristics produced in the anal fins of females of Gambusia affinis affinis by treatment with ethynyl testosterone. Biol Bull 30:371–383CrossRefGoogle Scholar
  60. Turner CL (1941b) Morphognesis of the gonopodium in Gambusia affinis affinis. J Morphol 69:161–185CrossRefGoogle Scholar
  61. Turner CL (1942a) Morphogenesis of the gonopodium suspensorium in Gambusia affinis affinis and the induction of male suspensorial characters in the female by androgenic hormones. J Exp Zool 91:167–193CrossRefGoogle Scholar
  62. Turner CL (1942b) A quantitative study of the effects of different concentrations of ethynyl testosterone and methyl testosterone in the production of gonopodia in females of Gambusia affinis. Physiol Zool 15(3):263–281CrossRefGoogle Scholar
  63. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94(3):280–294CrossRefPubMedGoogle Scholar
  64. Yamamoto M, Egami N (1974) Fine structure of the surface of the anal fin and the processes on its fin rays of male Oryzias latipes. Copeia 1974(1):262–265CrossRefGoogle Scholar
  65. Zauner H, Begemann G, Mari-Beffa M, Meyer A (2003) Differential regulation of msx genes in the development of the gonopodium, an intromittent organ, and of the “sword”, a sexually selected trait of swordtail fishes (Xiphophorus). Evol Dev 5(5):466–477CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Attached Promotive Centre for International Education and Research of Agriculture, Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
  3. 3.Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations