Advertisement

Emergence of Zebrafish as a Model System for Understanding Human Scoliosis

  • Long Guo
  • Shiro Ikegawa
  • Chisa Shukunami
Chapter

Abstract

Scoliosis is a three-dimensional rotation of the spine that is defined as lateral curvature with a Cobb angle greater than 10 degrees. About 2–3% of the global population is affected by scoliosis, and more than 80% of scoliosis are caused by unknown factors (idiopathic). Adolescent idiopathic scoliosis is the most common type of scoliosis and occurs in children over 10 years, showing a female predominance. Of scoliosis patients, 10% have curve progression requiring medical interventions such as bracing and surgery. Scoliosis research has been delayed due to the genetic complexity and a lack of relevant animal models for functional studies; however, significant breakthroughs of scoliosis study have recently been made using zebrafish. The zebrafish is a powerful tool, owing to easy genetic manipulation and a natural susceptibility to spinal curvature. Here, we summarize the utility of zebrafish as a model system for human scoliosis.

Keywords

Scoliosis Polygenic disease Vertebral column Notochord 

References

  1. Adham IM, Gille M, Gamel AJ, Reis A, Dressel R, Steding G et al (2005) The scoliosis (sco) mouse: a new allele of Pax1. Cytogenet Genome Res 111:16–26.  https://doi.org/10.1159/000085665 CrossRefPubMedGoogle Scholar
  2. Andersen MR, Farooq M, Koefoed K, Kjaer KW, Simony A, Christensen ST et al (2017) Mutation of the planar cell polarity gene VANGL1 in adolescent idiopathic scoliosis. Spine 42:E702–E707.  https://doi.org/10.1097/BRS.0000000000001927 CrossRefPubMedGoogle Scholar
  3. Azimzadeh J, Hergert P, Delouvee A, Euteneuer U, Formstecher E, Khodjakov A et al (2009) hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol 185(1):101–114.  https://doi.org/10.1083/jcb.200808082 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baschal EE, Wethey CI, Swindle K, Baschal RM, Gowan K, Tang NLS et al (2014) Exome sequencing identifies a rare HSPG2 variant associated with familial idiopathic scoliosis. G3 (Bethesda, Md.) 5:167–174.  https://doi.org/10.1534/g3.114.015669 CrossRefGoogle Scholar
  5. Bessa J, Tena JJ, de la Calle-Mustienes E, Fernandez-Minan A, Naranjo S, Fernandez A et al (2009) Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev Dyn 238(9):2409–2417.  https://doi.org/10.1002/dvdy.22051 CrossRefPubMedGoogle Scholar
  6. Bobyn JD, Little DG, Gray R, Schindeler A (2015) Animal models of scoliosis. J Orthop Res: Official Publication of the Orthopaedic Research Society 33:458–467.  https://doi.org/10.1002/jor.22797 CrossRefGoogle Scholar
  7. Brent AE, Tabin CJ (2002) Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev 12(5):548–557CrossRefPubMedGoogle Scholar
  8. Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbx1 in migration of muscle precursor cells. Development (Cambridge, England) 127:437–445Google Scholar
  9. Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T et al (2014) Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 23:5271–5282.  https://doi.org/10.1093/hmg/ddu224 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castelein RM, van Dieën JH, Smit TH (2005) The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis – a hypothesis. Med Hypotheses 65:501–508.  https://doi.org/10.1016/j.mehy.2005.03.025 CrossRefPubMedGoogle Scholar
  11. Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB et al (2015) Adolescent idiopathic scoliosis. Nat Rev Dis Primers 1:15030.  https://doi.org/10.1038/nrdp.2015.30 CrossRefPubMedGoogle Scholar
  12. Choksi SP, Lauter G, Swoboda P, Roy S (2014) Switching on cilia: transcriptional networks regulating ciliogenesis. Development 141:1427–1441.  https://doi.org/10.1242/dev.074666 CrossRefPubMedGoogle Scholar
  13. Dahl E, Koseki H, Balling R (1997) Pax genes and organogenesis. BioEssays 19(9):755–765.  https://doi.org/10.1002/bies.950190905 CrossRefPubMedGoogle Scholar
  14. Fleming A, Keynes R, Tannahill D (2004) A central role for the notochord in vertebral patterning. Development 131(4):873–880.  https://doi.org/10.1242/dev.00952 CrossRefPubMedGoogle Scholar
  15. Gorman KF, Breden F (2009) Idiopathic-type scoliosis is not exclusive to bipedalism. Med Hypotheses 72:348–352.  https://doi.org/10.1016/j.mehy.2008.09.052 CrossRefPubMedGoogle Scholar
  16. Gorman KF, Tredwell SJ, Breden F (2007) The mutant guppy syndrome curveback as a model for human heritable spinal curvature. Spine 32:735–741.  https://doi.org/10.1097/01.brs.0000259081.40354.e2 CrossRefPubMedGoogle Scholar
  17. Gorman KF, Julien C d, Moreau A (2012) The genetic epidemiology of idiopathic scoliosis. Eur Spine J 21:1905–1919.  https://doi.org/10.1007/s00586-012-2389-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Grimes DT, Boswell CW, Morante NFC, Henkelman RM, Burdine RD, Ciruna B (2016) Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352:1341–1344.  https://doi.org/10.1126/science.aaf6419 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34:535–549CrossRefPubMedGoogle Scholar
  20. Guo L, Yamashita H, Kou I, Takimoto A, Meguro-Horike M, Horike S-i et al (2016) Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird Homeobox gene causes body axis deformation. PLoS Genet 12:e1005802.  https://doi.org/10.1371/journal.pgen.1005802 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hayes M, Naito M, Daulat A, Angers S, Ciruna B (2013) Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/β-catenin-dependent cell fate decisions during vertebrate development. Development (Cambridge, England) 140:1807–1818.  https://doi.org/10.1242/dev.090183 CrossRefGoogle Scholar
  22. Hayes M, Gao X, Yu LX, Paria N, Henkelman RM, Wise CA et al (2014) ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun 5:4777.  https://doi.org/10.1038/ncomms5777 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hedequist D, Emans J (2007) Congenital scoliosis: a review and update. J Pediatr Orthop 27(1):106–116.  https://doi.org/10.1097/BPO.0b013e31802b4993 CrossRefPubMedGoogle Scholar
  24. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N et al (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357(16):1608–1619.  https://doi.org/10.1056/NEJMoa073687 CrossRefPubMedGoogle Scholar
  25. Ikegawa S (2016) Genomic study of adolescent idiopathic scoliosis in Japan. Scoliosis Spinal Disord 11:5.  https://doi.org/10.1186/s13013-016-0067-x CrossRefPubMedPubMedCentralGoogle Scholar
  26. Justice CM, Bishop K, Carrington B, Mullikin JC, Swindle K, Marosy B et al (2016) Evaluation of IRX genes and conserved noncoding elements in a region on 5p13.3 linked to families with familial idiopathic scoliosis and kyphosis. G3 (Bethesda, Md.) 6:1707–1712.  https://doi.org/10.1534/g3.116.029975 CrossRefGoogle Scholar
  27. Karner CM, Long F, Solnica-Krezel L, Monk KR, Gray RS (2015) Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet 24(15):4365–4373.  https://doi.org/10.1093/hmg/ddv170 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7:3–9.  https://doi.org/10.1007/s11832-012-0457-4 CrossRefPubMedGoogle Scholar
  29. Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J et al (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45(6):676–679.  https://doi.org/10.1038/ng.2639 CrossRefPubMedGoogle Scholar
  30. Kou I, Watanabe K, Takahashi Y, Momozawa Y, Khanshour A, Grauers A, Zhou H, Liu G, Fan Y-H, Takeda K, Ogura Y, Zhou T, Iwasaki Y, Kubo M, Wu Z, Matsumoto M, Einarsdottir E, Kere J, Huang D, Qiu G, Qiu Y, Wise CA, Song Y-Q, Wu N, Su P, Gerdhem P, Ikegawa S (2018) A multi-ethnic metaanalysis confirms the association of rs6570507 with adolescent idiopathic scoliosis. Sci Rep 8(1)Google Scholar
  31. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3(9):651–662.  https://doi.org/10.1038/nrm909 CrossRefPubMedGoogle Scholar
  32. Li W, Li Y, Zhang L, Guo H, Tian D, Li Y et al (2016) AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis. J Med Genet 53:488–493.  https://doi.org/10.1136/jmedgenet-2015-103684 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu Y, Sepich DS, Solnica-Krezel L (2017) Stat3/Cdc25a-dependent cell proliferation promotes embryonic axis extension during zebrafish gastrulation. PLoS Genet 13(2):e1006564.  https://doi.org/10.1371/journal.pgen.1006564 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T et al (2014) A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet 51:401–406.  https://doi.org/10.1136/jmedgenet-2013-102067 CrossRefPubMedGoogle Scholar
  35. Lu X, Borchers AGM, Jolicoeur C, Rayburn H, Baker JC, Tessier-Lavigne M (2004) PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430:93–98.  https://doi.org/10.1038/nature02677 CrossRefPubMedGoogle Scholar
  36. Miyagi C, Yamashita S, Ohba Y, Yoshizaki H, Matsuda M, Hirano T (2004) STAT3 noncell-autonomously controls planar cell polarity during zebrafish convergence and extension. J Cell Biol 166(7):975–981.  https://doi.org/10.1083/jcb.200403110 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K et al (2015) A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet 97(2):337–342.  https://doi.org/10.1016/j.ajhg.2015.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ogura Y, Takeda K, Kou I, Khanshour A, Grauers A, Zhou H, Liu G, Fan Y-H, Zhou T, Wu Z, Takahashi Y, Matsumoto M, Einarsdottir E, Kere J, Huang D, Qiu G, Xu L, Qiu Y, Wise CA, Song Y-Q, Wu N, Su P, Gerdhem P, Watanabe K, Ikegawa S (2018) An international meta-analysis confirms the association of BNC2 with adolescent idiopathic scoliosis. Sci Rep 8(1)Google Scholar
  39. Ohata S, Alvarez-Buylla A (2016) Planar organization of multiciliated ependymal (E1) cells in the brain ventricular epithelium. Trends Neurosci 39:543–551.  https://doi.org/10.1016/j.tins.2016.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ouellet J, Odent T (2013) Animal models for scoliosis research: state of the art, current concepts and future perspective applications. Eur Spine J: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 22(Suppl 2):S81–S95.  https://doi.org/10.1007/s00586-012-2396-7 CrossRefGoogle Scholar
  41. Patten SA, Margaritte-Jeannin P, Bernard J-C, Alix E, Labalme A, Besson A et al (2015) Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest 125:1124–1128.  https://doi.org/10.1172/JCI77262 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2:956–966.  https://doi.org/10.1038/35103567 CrossRefPubMedGoogle Scholar
  43. Peters H, Wilm B, Sakai N, Imai K, Maas R, Balling R (1999) Pax1 and Pax9 synergistically regulate vertebral column development. Development 126(23):5399–5408PubMedGoogle Scholar
  44. Pourquie O (2011) Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145(5):650–663.  https://doi.org/10.1016/j.cell.2011.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schäfer K, Neuhaus P, Kruse J, Braun T (2003) The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res 92:73–80CrossRefPubMedGoogle Scholar
  46. Shands AR Jr, Bundens WD (1956) Congenital deformities of the spine; an analysis of the roentgenograms of 700 children. Bull Hosp Joint Dis 17(2):110–133PubMedGoogle Scholar
  47. Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT et al (2011) Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet 20:1456–1466.  https://doi.org/10.1093/hmg/ddq571 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sharma S, Londono D, Eckalbar WL, Gao X, Zhang D, Mauldin K et al (2015) A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat Commun 6:6452.  https://doi.org/10.1038/ncomms7452 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Stickney HL, Barresi MJ, Devoto SH (2000) Somite development in zebrafish. Dev Dyn 219(3):287–303. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1065>3.0.CO;2-A.CrossRefPubMedGoogle Scholar
  50. Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N et al (2011) A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet 43(12):1237–1240.  https://doi.org/10.1038/ng.974 CrossRefPubMedGoogle Scholar
  51. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N et al (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94(8):3801–3804CrossRefPubMedPubMedCentralGoogle Scholar
  52. Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA enhancer browser – a database of tissue-specific human enhancers. Nucleic Acids Res 35:D88–D92.  https://doi.org/10.1093/nar/gkl822 CrossRefPubMedGoogle Scholar
  53. Wang WJ, Yeung HY, Chu WC-W, Tang NL-S, Lee KM, Qiu Y et al (2011) Top theories for the etiopathogenesis of adolescent idiopathic scoliosis. J Pediatr Orthop 31:S14–S27.  https://doi.org/10.1097/BPO.0b013e3181f73c12 CrossRefPubMedGoogle Scholar
  54. Witten PE, Huysseune A (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 84(2):315–346.  https://doi.org/10.1111/j.1469-185X.2009.00077.x CrossRefPubMedGoogle Scholar
  55. Yamashita S, Miyagi C, Carmany-Rampey A, Shimizu T, Fujii R, Schier AF et al (2002) Stat3 controls cell movements during zebrafish gastrulation. Dev Cell 2(3):363–375CrossRefPubMedGoogle Scholar
  56. Zhu Z, Tang NL-S, Xu L, Qin X, Mao S, Song Y et al (2015) Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun 6:8355.  https://doi.org/10.1038/ncomms9355 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Bone and Joint DiseasesRIKEN Center for Integrative Medical SciencesTokyoJapan
  2. 2.Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical & Health SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations