Zebrafish Wnt/β-Catenin Signaling Reporters Facilitate Understanding of In Vivo Dynamic Regulation and Discovery of Therapeutic Agents

  • Tohru IshitaniEmail author
  • Juqi Zou


Wnt/β-catenin signaling plays multiple roles in embryogenesis, organogenesis, and adult tissue homeostasis, and its dysregulation is linked to numerous human diseases such as cancer. Although strict spatiotemporal regulation must support the multi-functionality of Wnt/β-catenin signaling, detailed mechanisms remain unclear. In addition, Wnt/β-catenin signaling is a potential drug target candidate and several inhibitors have been identified by in vitro screening, but none have yet been incorporated into clinical practice. Recent studies using reporter zebrafish lines have gradually improved our understanding of in vivo dynamic regulation of Wnt/β-catenin signaling and have facilitated the discovery of new chemicals that can reduce Wnt/β-catenin signaling and cancer cell viability with few side effects. Here, we describe several new mechanisms supporting the spatiotemporal regulation of Wnt/β-catenin signaling and new small molecule inhibitors, discovered using zebrafish reporters. In addition, we discuss the potential of zebrafish signaling reporters in both developmental biology and pharmaceutical sciences.


Wnt/β-catenin signaling reporter modifier chemical inhibitor anti-cancer drug 


  1. Arce L, Pate KT, Waterman ML (2009) Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 9:159CrossRefPubMedPubMedCentralGoogle Scholar
  2. Burcklé C, Gaudé HM, Vesque C et al (2011) Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 20(13):2611–2627CrossRefPubMedGoogle Scholar
  3. Casari A, Schiavone M, Facchinello N et al (2014) A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development. Dev Biol 396(1):81–93CrossRefPubMedGoogle Scholar
  4. Chen B, Dodge ME, Tang W et al (2009) Small molecule-mediated disruption of Wnt-de pendent signaling in tissue regeneration and cancer. Nat Chem Biol 5(2):100–107CrossRefPubMedPubMedCentralGoogle Scholar
  5. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480CrossRefGoogle Scholar
  6. Clevers H, Nusse R (2012) Wnt/β-catenin signaling in development and disease. Cell 149(6):1192–1205CrossRefGoogle Scholar
  7. De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25(57):7545–7553CrossRefPubMedGoogle Scholar
  8. Delgado ER, Yang J, So J et al (2014) Identification and characterization of a novel small molecule inhibitor of β-catenin signaling. Am J Pathol 184(7):2111–2122CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deyts C, Candal E, Joly JS, Bourrat F (2005) An automated in situ hybridization screen in the Medaka to identify unknown neural genes. Dev Dyn 234(3):698–708CrossRefPubMedGoogle Scholar
  10. Dorsky RI, Scheldahl LC, Moon RT (2002) A transgenic Lef1/β-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241(2):229–237CrossRefPubMedGoogle Scholar
  11. Goessling W, North TE, Loewer S et al (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136(6):1136–1147CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ishitani T, Ninomiya-Tsuji J, Nagai S et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399(6738):798–802CrossRefPubMedGoogle Scholar
  13. Ishitani T, Matsumoto K, Chitnis AB, Itoh M (2005) Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nat Cell Biol 27(11):1106–1112CrossRefGoogle Scholar
  14. Kizil C, Küchler B, Yan JJ et al (2014) Simplet/Fam53b is required for Wnt signal trans- duction by regulating β-catenin nuclear localization. Development 141(18):3529–3539CrossRefPubMedGoogle Scholar
  15. Laux DW, Febbo JA, Roman BL (2011) Dynamic analysis of BMP-responsive smad activ- ity in live zebrafish embryos. Dev Dyn 240(3):682–694CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee W, Swarup S, Chen J, Ishitani T, Verheyen EM (2009) Homeodomain-interacting pro- tein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta-catenin/Arm and stimulation of target gene expression. Development 136(2):241–252CrossRefPubMedGoogle Scholar
  17. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810CrossRefGoogle Scholar
  18. Meneghini MD, Ishitani T, Carter JC et al (1999) MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399(6738):793–797CrossRefPubMedGoogle Scholar
  19. Moro E, Ozhan-Kizil G, Mongera A et al (2012) In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 366(2):327–340CrossRefPubMedGoogle Scholar
  20. Ohishi K, Toume K, Arai MA et al (2015) 9-Hydroxycanthin-6-one, a β-Carboline alkaloid from Eurycoma longifolia, is the first Wnt signal inhibitor through activation of glycogen synthase kinase 3β without depending on casein kinase 1α. J Nat Prod 78(5):1139–1146CrossRefPubMedGoogle Scholar
  21. Ota S, Ishitani S, Shimizu N et al (2012) NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor cells. EMBO J 31(8):1904–1915CrossRefPubMedPubMedCentralGoogle Scholar
  22. Posokhova E, Shukla A, Seaman S et al (2015) GPR124 functions as a WNT7-specific co- activator of canonical β-catenin signaling. Cell Rep 10(2):123–130CrossRefPubMedGoogle Scholar
  23. Qu Y, Gharbi N, Yuan X et al (2016) Axitinib blocks Wnt/β-catenin signaling and directs asym- metric cell division in cancer. Proc Natl Acad Sci U S A 113(33):9339–9344CrossRefPubMedPubMedCentralGoogle Scholar
  24. Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414CrossRefPubMedPubMedCentralGoogle Scholar
  25. Schwend T, Loucks EJ, Ahlgren SC (2010) Visualization of Gli activity in craniofacial tissues of hedgehog-pathway reporter transgenic zebrafish. PLoS One 5(12):e14396CrossRefPubMedPubMedCentralGoogle Scholar
  26. Shimizu N, Kawakami K, Ishitani T (2012) Visualization and exploration of Tcf/Lef func- tion using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish. Dev Biol 370(1):71–85CrossRefPubMedGoogle Scholar
  27. Shimizu N, Ishitani S, Sato A, Shibuya H, Ishitani T (2014) Hipk2 and PP1c cooperate to maintain Dvl protein levels required for Wnt signal transduction. Cell Rep 8(5):1391–1404CrossRefPubMedGoogle Scholar
  28. Teo JL, Kahn M (2010) The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev 62(12):1149–1155CrossRefGoogle Scholar
  29. Teo JL, Ma H, Nguyen C, Lam C, Kahn M (2005) Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci U S A 102(34):12171–12176CrossRefPubMedPubMedCentralGoogle Scholar
  30. Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M (2006) Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12(1):89–98CrossRefPubMedGoogle Scholar
  31. Vanhollebeke B, Stone OA, Bostaille N et al (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. elife 4:e06489CrossRefPubMedCentralGoogle Scholar
  32. Yanfeng W, Saint-Jeannet JP, Klein PS (2003) Wnt-frizzled signaling in the induction and differentiation of the neural crest. BioEssays 25:317–325CrossRefPubMedGoogle Scholar
  33. Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood-brain barrier in- tegrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31(2):248–256CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Lab of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular RegulationGunma UniversityMaebashiJapan

Personalised recommendations