Advertisement

Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Microbes Isolated from the Marine Sponge Biemna fortis (Topsent 1897)

  • Mahesh Pattabhiramaiah
  • M. Shanthala
  • S. Rajashekara
  • Farhan Sheikh
  • Sweta Naik
Chapter

Abstract

Industries rely on oil-based products as a significant source of energy. Spillages and accidental leakages are frequent during the extraction, refinement, transportation, and hoarding of oil and their products. The living beings on earth are foremostly contaminated by hazardous polycyclic aromatic hydrocarbons (PAHs); therefore, their degradation is essential. The inadequate use of chemical and mechanical techniques to expel hydrocarbons from the sullied marine ecosystem is not cost-effective. The conversion of complex natural contaminants to other simple natural substances by biodegraders such as microorganisms may allude to absolute mineralization into carbon dioxide, water, and inorganic substances through the mechanism of bioremediation. Previous research works on PAH-degrading bacteria are mainly focused on the utilization of terrestrial microbes; however, the potential use of marine microbes is unexplored. There is an enduring international interest in exploring the application of microbes isolated from marine sponge Biemna fortis having high PAH-degrading potential. This book chapter represents an updated overview of the potential application of microbes isolated from marine sponge B. fortis for PAH degradation.

References

  1. Adonis MI, Riquelme RM, Gil R, Rios C, Rodriguez L, Rodriguez EM (2003) PAHs and mutagenicity of inhalable and respirable diesel particulate matter in Santiago, Chile. Polycycl Aromat Compd 23:495–514CrossRefGoogle Scholar
  2. Agbozu IE, Opuene K (2009) Occurrence and diagenetic evolution of Perylene in the sediments of Oginigba Creek, Southern Nigeria. Int J Environ Res 3(1):117–120Google Scholar
  3. Albert LJ, Waller N, Stewart R (2005) Predicting the efficacy of polycyclic aromatic hydrocarbon bioremediation in creosote-contaminated soil using bioavailability assays. Biorem J 9(2):99–114CrossRefGoogle Scholar
  4. Albrecht MS, Year T, Johannes FI (2007) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microbial Ecol 55:94–106Google Scholar
  5. Alcolado PM, Gotera GG (1986) Nuevas adiciones a la fauna de poriferos de Cuba [New additions to the poriferan fauna of Cuba]. Poeyana 331:1–19Google Scholar
  6. Anand PT, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP (2006) Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res 161:252–262PubMedCrossRefPubMedCentralGoogle Scholar
  7. Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anupama M, Padma S (2009) Isolation of hydrocarbon degrading bacteria from soil contaminated with crude oil spills. Indian J Exp Biol 47:760–765Google Scholar
  9. Archana NT, Narsinh LT, Madhavi MI, Reena AP, Vrushali V, Werner EGM (2005) Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar Biotechnol 7:245–252CrossRefGoogle Scholar
  10. Asha D, Joseph S, Seghal K (2015) Biosurfactant production from marine bacteria associated with sponge Callyspongia diffusa. Biotech 5(4):443–454Google Scholar
  11. Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not-the Exxon Valdez experience. Microbial Biotechnol 2(2):213–221CrossRefGoogle Scholar
  12. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736CrossRefGoogle Scholar
  13. Belinda AL, Filipina BS, Michelle K (2005) The shallow water marine sponges (Porifera) of Cebu, Philippines. Sci Diliman 17(2):52–74Google Scholar
  14. Bergquist PR (1961) A collection of Porifera from Northern New Zealand, with descriptions of seventeen new species. Pac Sci 15(1):33–48Google Scholar
  15. Bergquist PR (1970) The marine fauna of New Zealand: Porifera, Demospongiae, Part 2. (Axinellida and Halichondrida). NZ Oceanogr Inst Mem 51:1–85Google Scholar
  16. Bergquist PR, Fromont PJ (1988) The marine fauna of New Zealand: Porifera, Demospongiae, Part 4 (Poecilosclerida). NZ Oceanogr Inst Mem 96:1–197Google Scholar
  17. Binkova B, Giguere Y, Rossner P Jr, Dostal M, Sram RJ (2000) The effect of dibenzo[a,1]pyrene and benzo[a]pyrene on human diploid lung fibroblasts: the induction of DNA adducts, expression of p53 and p21(WAF1) proteins and cell cycle distribution. Mut Res 471:57–70CrossRefGoogle Scholar
  18. Bowerbank JS (1858) On the anatomy and physiology of the Spongiadae. Part I. On the Spicula. Phil Trans Royal Soc 148(2):279–332Google Scholar
  19. Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microbial Biotechnol 2(6):587–594CrossRefGoogle Scholar
  20. Bultel-Poncé V, Berge J-P, Debitus C, Nicolas J-L, Guyot M (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. Mar Biotechnol 1:384–390PubMedCrossRefPubMedCentralGoogle Scholar
  21. Burgess JG, Jordan EM, Bregu M, Mearns SA, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70:27–32PubMedCrossRefPubMedCentralGoogle Scholar
  22. Burton M (1930) Addition to the sponge fauna of the Gulf of Manau. Ann Mag Nat Hist 3(10):663–676Google Scholar
  23. Burton M (1959) Sponges. In: Scientific ref torts of the John Murray expedition 1933–34 London, British Museum (Natural History) 10(3):131–281Google Scholar
  24. Burton M, Rao HS (1932) Report on the shallow-water marine sponge in the collection of the Indian museum. Rec Indian Museum 34(3):299–336+18Google Scholar
  25. Cai Q-Y, Mo C-H, Li Y-H, Zeng Q-Y, Katsoyiannis A, Wu Q-T, Férard J-F (2007) Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere 68:159–168PubMedCrossRefPubMedCentralGoogle Scholar
  26. Carmona M, Zamarro MT, Blazquez B, Durante-Rodriguez G, Juarez JF, Valderrama JA (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbial Mol Biol Rev 73:71–133CrossRefGoogle Scholar
  27. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  28. Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 3(2–3):331–338CrossRefGoogle Scholar
  29. Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca RatonGoogle Scholar
  30. Chaineau CH, Morel JL, Oudot J (2000) Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. J Environ Qual 29:569–578CrossRefGoogle Scholar
  31. Chaineau CH, Rougeux G, Yepremian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497CrossRefGoogle Scholar
  32. Daane LL, Harjono I, Zylstra GJ, Häggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691PubMedPubMedCentralCrossRefGoogle Scholar
  33. Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Haggblom MM (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dagley S (1975) A biochemical approach to some problems of environmental pollution. Essays Biochem 11:81–138PubMedPubMedCentralGoogle Scholar
  35. Dahihande AS, Thakur NL (2017) Differential growth forms of the sponge Biemna fortis govern the abundance of its associated brittle star Ophiactis modesta. J Sea Res 126:1–11CrossRefGoogle Scholar
  36. Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dasgupta D, Ghosh R, Sengupta TK (2013) Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol Article ID 250749Google Scholar
  38. De Laubenfels MW (1930) The sponges of California. Abstracts of dissertations for the degree of doctor of philosophy. Stanford Univ Bull 5(98):24–29Google Scholar
  39. Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204:205–211PubMedCrossRefGoogle Scholar
  40. Dendy A (1897) Catalogue of non-calcareous sponges collected by J Bracebriooc Wilson. Lsq.. MA. in the neighborhood of Port Phillip Heads. Part 3. Proc R Soc Vic 2(9):230–259Google Scholar
  41. Dendy A (1905) Report on the sponges collected by professor Herdman, at Ceylon, in 1902. In Herdman WA (Fd). Report to the Government of Ceylon on the pearl oyster fisheries of the Gulf of Manaar. Proc Royal Soc Lond 3(18):57–246Google Scholar
  42. Dendy A (1916) Report on the non-calcareous sponges collected by Mr James Hornlll at Okhamandal in Kathiawar in 1905-6. In: Report to the Government of Baroda on the Marine Zoology Okhamandal 17(2):93–146Google Scholar
  43. Dendy A (1922) Report on the Sigmalotctraxonida collected by IIMS Sealark’ in the Indian Ocean In: Reports of the Percy Sladen Trust Expedition to the Indian Ocean in 1905, Volume 7. Trans Linn Soc Lond Second Ser Zool 18:1–164Google Scholar
  44. Desqueyroux-Faundez R (1981) Revision dc la collection d’tpongcs d’Amboine (Moluqucs. Indontsic) constitute par Bedot ct Pictet et conservee au Mustum (fhistoirc naturelle dc Gcntvc). Rev Suisse Zool 88(3):723–764CrossRefGoogle Scholar
  45. Díaz-Ramírez IJ, Escalante-Espinosa E, Favela-Torres E, Gutíerrez-Rojas M, Ramírez-Saad H (2008) Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. Int Biodeter Biodegr 62(1):21–30CrossRefGoogle Scholar
  46. Doyle E, Muckian L, Hickey AM, Clipson N (2008) Microbial PAH degradation. In: Laskin AI, Sariaslani S, Gadd G (eds) Advances in applied microbiology. Elsevier Inc, San Diego, pp 27–66Google Scholar
  47. Eaton RW, Chapman PJ (1992) Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol 174:7542–7554PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ensign SA (2001) Microbial metabolism of aliphatic alkenes. Biochemist 40:5845–5853CrossRefGoogle Scholar
  49. Fagbote EO, Olanipekun EO (2010) Levels of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment of bitumen deposit impacted area. Int J Environ Sci Tech 7(3):561–570CrossRefGoogle Scholar
  50. Farhan S, Mahesh P (2015) Biodegradation of polycyclic aromatic hydrocarbons using sponge Biemna Fortis associated bacteria. Int J Res Stud Biosci 3(5):91–98Google Scholar
  51. Floodgate G (1984) The fate of petroleum in marine ecosystems in petroleum microbiology (Atlas RM, ed). Macmillion, New York, pp 355–398Google Scholar
  52. Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243PubMedCrossRefGoogle Scholar
  53. Haghighat S, Akhavan SA, Assadi MM, Pasdar H (2008) Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial enhanced oil recovery. Int J Environ Sci Tech 5(3):385–390CrossRefGoogle Scholar
  54. Hallmann EF (1916) A revision of the genera with microscleres included, or provisionally included, in the family Axinellidae; with descriptions of some Australian species. Part II. Proc Linn Soc NSW 41(163):495–552Google Scholar
  55. Haritash AK, Kaushik CP (2016) Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil. Int J Environ Sci 6(4):472–482Google Scholar
  56. Harvey RG (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity. Cambridge University Press, CambridgeGoogle Scholar
  57. Hentschel E (1911) Tetraxonida. 2. Teil. In: Michaelsen W, Hartmeyer R (eds) Die Fauna Südwest-Australiens. Ergebnisse der Hamburger südwest-australischen Forschungsreise 1905, 3(10):279–393, Fischer, JenaGoogle Scholar
  58. Hentschel E (1912) Kiesel- und HomsthwSinme der Aru- und Kei-lnscln. In: Ergcbnisse cincr Zoologischen Forschung-jreise in den sUdOstLichen Molukken (Aru- und Kei-lnseln) im A U Drag der Senekenhcrgischcn Naturforyehenclen Gese Use hall ausgefdhrt von Dr. Hugo Merton 2(3):293–448Google Scholar
  59. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–667CrossRefGoogle Scholar
  61. Heyndrickx M, Vandemeulebroecke K, Scheldeman P et al (1995) Paenibacillus (formerly Bacillus) gordonae (Pichinoty et al., 1986) Ash et al., 1994 is a later subjective synonym of Paenibacillus (formerly Bacillus ) validus (Nakamura 1984) Ash et al ., 1994: emended description of P. validus. Int J Sys Bacteriol 45:661–669Google Scholar
  62. Hill RT (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery, pp 177–190Google Scholar
  63. Hooper JNA, Capon RJ, Hodder RA (1991) A new species of toxic marine sponge (Porifera: Demospongiae: Poecilosclerida) from Northwest Australia. Beagle Rec Nor Terr Mus Arts Sci 8(1):27–36Google Scholar
  64. Hughes JB, Beckles DM, Chandra SD, Ward CH (1997) Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. J Ind Microbiol Biotech 18(2–3):152–160CrossRefGoogle Scholar
  65. Isaac DD, Ramakrishana DPD, Gohila R, Lipton AP (2012) Screening of marine sponge-associated bacteria from Echinodictyum gorgonoides and its bioactivity. Afr J Biotechnol 11(88):15469–15476CrossRefGoogle Scholar
  66. Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–584PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jeon YJ, Sim CJ (2009) A new record of genus Halichondria (Demospongiae: Halichondrida: Halichondriidae) from Korea. Korean J Syst Zool 25(1):137–139Google Scholar
  68. Kalirajan A, Karpakavalli M, Narayanan KR, Ambiganandham K, Ranjitsingh AJA, Sudhakar S (2013) Isolation, characterization and phylogeny of sponge – associated bacteria with antimicrobial and immunomodulatory potential. Int J Curr Microbiol Appl Sci 2(4):136–151Google Scholar
  69. Keller C (1889) Die Spongienfauna des rothen Meeres (I. Hälfte). Z. wiss. Zool 48:311–405Google Scholar
  70. Kelley I, Freeman JP, Evans FE, Cerniglia CE (1990) Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation 1:283–290PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kieschnick O (1900) Kieselschwämme von Amboina. In: Semon R (ed) Zoologische Forschungsreisen in Australien und dem Malayischen Archipel Ausgesführt in den Jahren 1891–1893, pp 547–582Google Scholar
  72. Kiran GS, Anto Thomas T, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396CrossRefGoogle Scholar
  73. Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Selvin J (2014) Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol 14:4CrossRefGoogle Scholar
  74. Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176:2439–2443PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ladousse A, Tramier B (1991) Results of 12 years of research in spilled oil bioremediation: inipol EAP 22. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 577–581Google Scholar
  76. Le Floch S, Merlin F-X, Guillerme M et al (1997) Bioren: recent experiment on oil polluted shoreline in temperate climate. In: In-situ and on-site bioremediation. Battelle Press, Columbus, pp 411–417Google Scholar
  77. Le Floch S, Merlin F-X, Guillerme M, Dalmazzone C, Le Corre P (1999) A field experimentation on bioremediation. Bioren Environ Technol 20(8):897–907CrossRefGoogle Scholar
  78. Lee KH, Byeon SH (2010) The biological monitoring of urinary 1hydroxypyrene by PAH exposure among smokers. Int J Environ Res 4(3):439–442Google Scholar
  79. Lee K, Tremblay GH, Gauthier J, Cobanli SE, Griffin M (1997) Bioaugmentation and biostimulation: a paradox between laboratory and field results. In: Proceedings of the Internatinal Oil Spill Conference. American Petroleum Institute, Washington, DC, pp 697–705Google Scholar
  80. Lemos ML, Toranzo AE, Barja LJ (1986) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbiol Ecol 11:149–163CrossRefGoogle Scholar
  81. Levi C (1961) Rcsultats scientifiques des Campagnes dc la Calypso. XIV.- Catnpagne 1934 dans I’Ocdan Indien (suite). 2 Les Spongiaires de file Aldabra. Catnpagne oedanographique dc la Calypso (mai-juin 19.34). Annates de I’lnstilut ociano- graphique 39(3):1–32Google Scholar
  82. Levi C (1963) Spongiaires d’Afrique du Sud. (1) Poccilosclcridcs. Trans Royal Soc S Afr 37(I):1–72Google Scholar
  83. Liu K, Han W, Pan WP, Riley JT (2001) Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. J Hazard Matter 84:175–188CrossRefGoogle Scholar
  84. Mackay D, Callcott D (1998) Partitioning and physical chemical properties of PAHs. In: Neilson AH (ed) The handbook of environmental chemistry. Springer, Berlin, pp 325–346Google Scholar
  85. Marston CP, Pereira C, Ferguson J, Fischer K, Hedstrom O, Dashwood WM et al (2001) Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis 22:1077–1086PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mastrangelo G, Fadda E, Marzia V (1996) Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104:1166–1170PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mearns AJ (1997) Cleaning oiled shores: putting bioremediation to the test. Spill Sci Technol Bull 4(4):209–217CrossRefGoogle Scholar
  88. Menn FM, Applegate BM, Sayler GS (1993) NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl Environ Microbiol 59:1938–1942PubMedPubMedCentralGoogle Scholar
  89. Meyer MR, Neef A, Stahl U (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiol 145:1731–1741CrossRefGoogle Scholar
  90. Molina LR, Carvalho AU, Facury Filho EJ (1999) Prevalence and classification of foot problems in lactating cows in Belo Horizonte. Brazil Arq Bras Med Vet Zootec V 51:149–152CrossRefGoogle Scholar
  91. Morehead NR, Eadie BJ, Lake B, Landrum PD, Berner D (1986) The sorption of PAH onto dissolved organic matter in Lake Michigan waters. Chemosphere 15:403–412CrossRefGoogle Scholar
  92. Mothes B, De Campos MA (2004) Biemna trisigmata n.sp., a new sponge from the North coast of Brazil (Demospongiae, Poecilosclerida). Zootaxa 639:1–7CrossRefGoogle Scholar
  93. Mrozik A, Piotrowska SZ, Labuzek S (2003) Bacterial degradation and bioremediation of poly aromatic hydrocarbons. Polish J Environ Stud 12(1):15–21Google Scholar
  94. Narasimhulu K, Setty YP (2011) Isolation and characterization of naphthalene degrading bacteria from soils in Warangal. Int J Appl Biol Pharm Technol 2:94–103Google Scholar
  95. Nichols WJ (2001) The U.S. environmental protect agency: national oil and hazardous substances pollution contingency plan, subpart J product schedule (40 CFR 300.900). In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 1479–1483Google Scholar
  96. Nilanjana D, Preethy C (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int Article ID 941810Google Scholar
  97. Nwuche CO, Ugoji EO (2008) Effects of heavy metal pollution on the soil microbial activity. Int J Environ Sci Tech 5(3):409–414CrossRefGoogle Scholar
  98. Okafor EC, Opuene K (2007) Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int J Environ Sci Tech 4(2):233–240CrossRefGoogle Scholar
  99. Osuji LC, Ezebuiro PE (2006) Hydrocarbon contamination of a typical mangrove floor in Niger Delta, Nigeria. Int J Environ Sci Tech 3(3):313–320CrossRefGoogle Scholar
  100. Othman N, Hussain N, Abdul ST (2010) Degradation polycyclic aromatic hydrocarbons by pure strain isolated from municipal sludge: synergistic and cometabolism formula. International Conference on Environmental ScienceGoogle Scholar
  101. Perugini M, Visciano P, Giammarino A, Manera M, Nardo WD, Amorena M (2007) Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea Italy. Chemosphere 66(10):1904–1910PubMedCrossRefPubMedCentralGoogle Scholar
  102. Pichinoty F, Waterbury JB, Mandel M (1986) Bacillus gordonae sp. nov., une nouvelle espace appartenant au second groupe morphologique, degrandant divers composes aromatiques. Ann Inst Pasteur Microbiol (Paris) 137A:65–78CrossRefGoogle Scholar
  103. Pinyakong O, Habe H, Omori T (2003a) The unique aromatic catabolic genes in sphingomonas degrading polycyclic aromatic hydrocarbons. J Gen Appl Microbiol 49:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  104. Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T (2003b) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Co 301:350–357CrossRefGoogle Scholar
  105. Pinyakong O, Habe H, Kouzuma A, Nojiri H, Yamane H, Omori T (2004) Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol Lett 238:297–305PubMedPubMedCentralGoogle Scholar
  106. Prabha D, Solimabi W, Cheryl R, Lisette DS (2010) The sponge-associated bacterium Bacillus licheniformis SAB1: a source of antimicrobial compounds. Mar Drugs 8:1203–1212CrossRefGoogle Scholar
  107. Prince RC (1997) Bioremediation of marine oil spills. Trends Biotechnol 15(5):158–160CrossRefGoogle Scholar
  108. Proksch P, Edrada RA, Ebel R (2002) Drugs from the Seas-current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134PubMedCrossRefPubMedCentralGoogle Scholar
  109. Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AAM (2007) Bioavailability and degradation of phenanthrene in compost amended soil. Chemosphere 67:548–556PubMedCrossRefPubMedCentralGoogle Scholar
  110. Pulitzer-Finali G (1993) A collection of marine sponges from East Africa. Annali del Museo civico di storia naturale Giacomo Porta 89:247–350Google Scholar
  111. Radjasa OK (2007) Antibacterial activity of sponge associated-bacteria isolated from North Java Sea. J Coastal Dev 10(3):143–150Google Scholar
  112. Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168PubMedPubMedCentralCrossRefGoogle Scholar
  113. Reimer A, Blohm A, Quack T, Grevelding CG, Kozjak-Pavlovic V, Rudel T, Hentschel U, Abdelmohsen UR (2015) Inhibitory activities of the marine streptomycete-derived compound SF2446A2 against Chlamydia trachomatis and Schistosoma mansoni. J Antibiot 68:674–679PubMedCrossRefPubMedCentralGoogle Scholar
  114. Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287PubMedCrossRefPubMedCentralGoogle Scholar
  115. Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Ind Microbiol Biotechnol 17:438–457CrossRefGoogle Scholar
  116. Rios P, Cristobo J (2006) A new species of Biemna (Porifera: Poecilosclerida) from Antarctica: Biemna strongylota. J Mar Biol Asso UK 86:949–955CrossRefGoogle Scholar
  117. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248PubMedCrossRefPubMedCentralGoogle Scholar
  118. Santos OC, Pontes PV, Santos JF, Muricy G, Giambiagi-de MM, Laport MS (2010) Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res Microbiol 161(7):604–612PubMedCrossRefPubMedCentralGoogle Scholar
  119. Saravanakumar R, Ronald J, Ramesh U, Maheswari K (2011) Molecular analysis of sponge associated bacteria in Gulf of Mannar Coast and their antibacterial activity against fish pathogens. World J Fish Mar Sci 3(1):67–70Google Scholar
  120. Schützendübel A, Majcherczyk A, Johannes C, Hüttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int Biodeterior Biodegr 43:93–100CrossRefGoogle Scholar
  121. Sei A, Fathepure BZ (2009) Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. J Appl Microbiol 107(6):2001–2008CrossRefGoogle Scholar
  122. Sheryanne VP, Irene F (2012) Antibacterial activity of halophilic bacterial bionts from marine invertebrates of Mandapam-India. Indian J Pharm Sci 74(4):331–338CrossRefGoogle Scholar
  123. Sim CJ, Shim EJ (2006) A taxonomic study on marine sponges from Chujado Islands. Korea Korean J Syst 22(2):153–168Google Scholar
  124. Simone M, Erba E, Damia G, Vikhanskaya F, Francesco AD, Riccardi R, Bailey C, Cuevas C, Fernandez JSF, Incalci MD (2005) Variolin B and its derivate deoxy-variolin B: new marine natural compounds with cyclin-dependent kinase inhibitor activity. Eur J Cancer 41(15):2366–2377PubMedCrossRefPubMedCentralGoogle Scholar
  125. Skariyachan S, Rao GA, Patil SB, Bharadwaj KV, Rao GSJ (2014) Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar biosphere, India. Lett Appl Microbiol 58:231–241PubMedCrossRefPubMedCentralGoogle Scholar
  126. Sollas (1902) On the sponges collected during the ‘Skeat Expedition’ to the Malay Peninsula, 1899–1900. Proc Zool Soc Lond 2(1):210–221Google Scholar
  127. Sudip KS, Om VS, Rakesh KJ (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248CrossRefGoogle Scholar
  128. Tanita S, Hoshino T (1989). The Demospongiae of Sagami Bay. Biological Laboratory, Imperial Household: Japan. i–xiii, 1–197 [in English], pls 1–19; 1–166Google Scholar
  129. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedPubMedCentralCrossRefGoogle Scholar
  130. Thavamani P, Megharaj M, Naidu R (2012) Bioremediation of high molecular weight polyaromatic hydrocarbons contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation 23:823–835PubMedCrossRefGoogle Scholar
  131. Thiele (1903) Kicsclschwammc von Tcmate. II. Abhandlungen der Senckenbergischen nalurforschcnden Gesel- hchafl 25:933–968Google Scholar
  132. Thomas PA (1973) Marine Demospongiae of Mahe Island in the Seychelles Bank (Indian Ocean). Annales du Musée royal de l’Afrique centrale Sciences zoologiques 203:1–96Google Scholar
  133. Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association: a review. Mar Drugs 8:1417–1468PubMedPubMedCentralCrossRefGoogle Scholar
  134. Topsent E (1897) Spongiaires de la Baie d’Amboine. (Voyage de MM. M. Bedot et C. Pictet dans l’Archipel Malais). Rev Suisse Zool 4:421–487CrossRefGoogle Scholar
  135. Tumaikina YA, Turkovskaya OV, Ignatov VV (2008) Degradation of hydrocarbons and their derivatives by a microbial association on the base of Canadian pondweed. Appl Biochem Microbiol 45:382–388CrossRefGoogle Scholar
  136. Uriz MJ (1988) Deep-water sponges from the continental shelf and slope off Namibia (Southwest Africa): classes Hexactinellida and Demospongia. Monografías de zoología marina 3:9–157Google Scholar
  137. USEPA (2002) Spill NCP product schedule. http://www.epa.gov/oilspill
  138. Vacelet J, Donadey C (1977) Electron-microscope study of association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314CrossRefGoogle Scholar
  139. Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21CrossRefGoogle Scholar
  140. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149PubMedCrossRefPubMedCentralGoogle Scholar
  141. van Soest RWM (1994) Sponges of the Seychelles. In: van der Land J (ed) Oceanic reefs of the Seychelles, Netherlands Indian Ocean Programme, Cruise Reports 2. National Museum of Natural History. Leiden, pp 65–74Google Scholar
  142. Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol Bull 8(2):163–178CrossRefGoogle Scholar
  143. Venosa AD, Suidan MT, Wrenn BA et al (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30(5):1764–1775CrossRefGoogle Scholar
  144. Venosa AD, Zhu X, Suidan MT, Lee K (2001) Guidelines for the bioremediation of marine shorelines and freshwater wetlands. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, CincinnatiGoogle Scholar
  145. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346PubMedCrossRefPubMedCentralGoogle Scholar
  146. WHO (1983) Polynuclear aromatic compounds, Part 1, chemical, environmental and experimental data. IARC Monogr Eval Carcinog Risk Chem Hum 32:1–453Google Scholar
  147. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93PubMedCrossRefPubMedCentralGoogle Scholar
  148. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266CrossRefGoogle Scholar
  149. Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zhao HP, Wang L, Ren JR, Li Z, Li M, Gao HW (2008) Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5. J Hazard Matter 152(3):1293–1300CrossRefGoogle Scholar
  151. Zhao Y, Si L, Liu D, Proksch P, Zhou D, Lin W, Truncateols A-N (2015) New isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with anti-H1N1 virus activities. Tetrahedron 71:2708–2718CrossRefGoogle Scholar
  152. Zhu X, Li J, Sun K, Li S, Ling W, Li X (2016) Potential of endophytic bacterium Paenibacillus sp. PHE-3 isolated from Plantago asiatica L. for reduction of PAH contamination in plant tissues. Int J Environ Res Public Health 13(7):633 1–12PubMedCentralCrossRefGoogle Scholar
  153. Zwick TC, Foote EA, Pollack AJ et al (1997) Effects of nutrient addition during bioventing of fuel contaminated soils in an arid environment. In: In-Situ and On-Site Bioremediation. Battelle Press, Columbus, pp 403–409Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mahesh Pattabhiramaiah
    • 1
  • M. Shanthala
    • 1
  • S. Rajashekara
    • 1
  • Farhan Sheikh
    • 2
  • Sweta Naik
    • 2
  1. 1.Centre for Applied Genetics, Department of Studies in ZoologyBangalore UniversityBengaluruIndia
  2. 2.National Institute of Oceanography, Council for Scientific and Industrial Research Dona PaulaDona PaulaIndia

Personalised recommendations