Biosurfactants in Improving Bioremediation Effectiveness in Environmental Contamination by Hydrocarbons

  • Paulo Renato Matos LopesEmail author
  • Renato Nallin Montagnolli
  • Jaqueline Matos Cruz
  • Elis Marina Turini Claro
  • Ederio Dino Bidoia


Recent biotechnological advances currently evidence new surfactant production technologies. Biocompounds produced by fermentative processes appeared as an economic and sustainable alternative to many synthetic molecules. Thereby, biosurfactants have become a promising substitute due to their synthesis potential by a wide variety of microorganisms. Biosurfactants are a highly diverse group of structures, such as glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. This diversity promotes many advantages compared to synthetic surfactants, thus making biosurfactants the most natural choice for technological advances associated with sustainable development. Such advantages include fermentative production viability by using renewable resources, effectiveness in small concentrations even under extreme conditions, selective and specific potential for several applications, lower toxicity, higher biodegradability, and better stability to physicochemical variations. Despite their benefits, biosurfactants are not widely used because of the high production costs. Hence, cost-effective substrates, optimized cultivation conditions, and mutant lineage development are imperative to make these biomolecules an economically competitive product to propose a widespread replacement of synthetic surfactants.


  1. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336PubMedPubMedCentralCrossRefGoogle Scholar
  2. Accorsini FR, Mutton MJR, Lemos EGM, Benincasa M (2012) Biosurfactants production by yeasts using soybean oil and glycerol as low-cost substrate. Braz J Microbiol 43:116–125PubMedPubMedCentralCrossRefGoogle Scholar
  3. Admon S, Green M, Avnimelech Y (2001) Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Bioremediat J 5:193–209CrossRefGoogle Scholar
  4. Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703PubMedCrossRefGoogle Scholar
  5. Al-Mutairi N, Bufarsan A, Al-Rukaibi F (2008) Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere 74:142–148PubMedCrossRefGoogle Scholar
  6. Amani H, Müller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotechnol 170:1080PubMedCrossRefGoogle Scholar
  7. Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B: Biointerfaces 95:23–29PubMedCrossRefGoogle Scholar
  8. Araujo LV, Guimarães CR, Marquita RLS, Santiago VMJ, De Souza MP, Nitschke M, Freire DMG (2016) Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control 63:171–178CrossRefGoogle Scholar
  9. Atlas MR (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209PubMedPubMedCentralGoogle Scholar
  10. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53:495–508PubMedCrossRefGoogle Scholar
  11. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  12. Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescence isolated from a petroleum contaminated soil. Environ Int 26:413–416PubMedCrossRefGoogle Scholar
  13. Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078PubMedCrossRefGoogle Scholar
  14. Bartha R, Atlas RM (1977) The Microbiology of Aquatic oil Spills. Adv Appl Microbiol 22:225–226PubMedCrossRefGoogle Scholar
  15. Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449PubMedCrossRefGoogle Scholar
  16. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek 85:1–8PubMedCrossRefGoogle Scholar
  17. Bezza FA, Chirwa EMN (2015a) Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf Environ Prot 98:354–364CrossRefGoogle Scholar
  18. Bezza FA, Chirwa EMN (2015b) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178CrossRefGoogle Scholar
  19. Bhadoriya SS, Madoriya N, Shukla K, Parihar MS (2013) Biosurfactants: a new pharmaceutical additive for solubility enhancement and pharmaceutical development. Biochem Pharmaco 2:1–5Google Scholar
  20. Bidoia ED, Montagnolli RN, Lopes PRM (2010) Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, Formatex Research Center: Espanha, vol 2, pp 1277–1288Google Scholar
  21. Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505PubMedCrossRefGoogle Scholar
  22. Boudour AA, Guerrero-Baraja C, JIorle BV, Malcomson ME, Paull AK, Somogyi A, Trinh LN, Bater RB, Maier RM (2004) Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Appl Environ Microbiol 70:1114–1120Google Scholar
  23. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266PubMedCrossRefGoogle Scholar
  24. Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116CrossRefGoogle Scholar
  25. Cerqueira VS, Peralba MCR, Camargo FAO, Bento FM (2014) Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeterior Biodegrad 95:338–345CrossRefGoogle Scholar
  26. Chavan A, Mukherji S (2008) Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: effect of N:P ratio. J Hazard Mater 154:63–72PubMedCrossRefGoogle Scholar
  27. Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:137PubMedPubMedCentralCrossRefGoogle Scholar
  28. Costa SGVAO, Nitschke M, Contiero J (2008) Produção de biotensoativos a partir de resíduos de óleos e gorduras. Ciênc Tecnol Aliment 28:34–38CrossRefGoogle Scholar
  29. Cruz JM, Hughes C, Quilty B, Montagnolli RN, Bidoia ED (2017) Agricultural Feedstock Supplemented with Manganese for Biosurfactant Production by Bacillus subtilis. Waste Biomass Valorization:1–6Google Scholar
  30. D’Aes J, Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant – Pseudomonas interactions and their importance to biocontrol. Environment Microbiol Rep 2:359–372CrossRefGoogle Scholar
  31. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036PubMedPubMedCentralCrossRefGoogle Scholar
  32. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64PubMedPubMedCentralGoogle Scholar
  33. Develter DWG, Lauryssen LML (2010) Properties and industrial applications of sophorolipids. Eur J Lipid Sci Technol 112:628–638CrossRefGoogle Scholar
  34. Díaz de Rienzo MA, Kamalanathan ID, Martin PJ (2016) Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochem 51:820–827CrossRefGoogle Scholar
  35. Diaz AB, Blandino A, Caro I (2018) Value added products from fermentation of sugars derived from agro-food residues. Trends Food Sci Technol 71:52–64 in pressCrossRefGoogle Scholar
  36. Díaz-Ramírez IJ, Escalante-Espinosa E, Favela-Torres E, Gutiérrez-Rojas M, Ramírez-Saad H (2008) Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. Int Biodeterior Biodegradation 62:21–30CrossRefGoogle Scholar
  37. Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol 33:123–135PubMedCrossRefGoogle Scholar
  38. Du J, Zhang A, Hao J, Wang J (2017) Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli. Biotechnol Lett 39:1041–1048PubMedCrossRefGoogle Scholar
  39. Duan J, Liu W, Zhao X, Han Y, O’Reilly SE, Zhao D (2017) Study of residual oil in Bay Jimmy sediment 5 years after the Deepwater Horizon oil spill: Persistence of sediment retained oil hydrocarbons and effect of dispersants on desorption. Sci Total Environ. 618:1244–1253 In pressPubMedCrossRefGoogle Scholar
  40. Dusane DH, Zinjarde SS, Venugopalan VP, MClean RJC, Weber MM, Rahman PKSM (2010) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184PubMedCrossRefGoogle Scholar
  41. Elanchezhiyan SS, Sivasurian N, Meenakshi S (2016) Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method. Carbohydr Polym 145:103–113PubMedCrossRefGoogle Scholar
  42. El-Tarabily KA (2002) Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf. Can J Microbiol 48:176–182PubMedCrossRefGoogle Scholar
  43. Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878PubMedCrossRefGoogle Scholar
  44. Ferreira A, Vecino X, Ferreira D, Cruz JM, Moldes AB, Rodrigues LR (2017) Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids Surf B Biointerfaces 155:522–529PubMedCrossRefGoogle Scholar
  45. Fish NM, Allenby DJ, Lilly MD (1982) Oxidation of n-alkanes: growth of Pseudomonas putida. Eur J Appl Microbiol Biotechnol 14:259–262CrossRefGoogle Scholar
  46. Franzetti A, Gandolfi I, Bestett IG, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627CrossRefGoogle Scholar
  47. Grote M, Van Bernem C, Böhme B, Callies U, Calvez I, Christie B, Colcomb K, Damian HP, Farke H, Gräbsch C, Hunt A, Höfer T, Knaack J, Kraus U, Le Floch S, Le Lann G, Leuchs H, Nagel A, Nies H, Nordhausen W, Rauterberg J, Reichenbach D, Scheiffarth G, Schwichtenberg F, Theobald N, Voß J, Wahrendorf DS (2018) The potential for dispersant use as a maritime oil spill response measure in German waters. Mar. Pollut. Bull. 129(2):623–632PubMedCrossRefGoogle Scholar
  48. Hazra C, Kundu D, Ghosh P, Joshi S, Dandia N, Chaudharia A (2011) Screening and identification of Pseudomonas aeruginosa AB4 for improved production, characterization and application of a glycolipid biosurfactant using low-cost agro-based raw materials. J Chem Technol Biotechnol 86:185–198CrossRefGoogle Scholar
  49. Heryani H, Putra MD (2017) Dataset on potential large scale production of biosurfactant using Bacillus sp. Data Br 13:196–201CrossRefGoogle Scholar
  50. Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692CrossRefGoogle Scholar
  51. Huang XD, El-Alawi Y, Penrose DM, Glick B, Greenberg BM (2004) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476PubMedCrossRefGoogle Scholar
  52. Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:2233–2235CrossRefGoogle Scholar
  53. Juhasz A, Stanley GA, Britz ML (2000) Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: effects on Microtox and mutagenicity bioassays. Bioremediation J 4:271–283CrossRefGoogle Scholar
  54. Lee SH, Oh BI, Kim JG (2008) Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity. Biores Technol 99:2578–2587CrossRefGoogle Scholar
  55. Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour Technol 224:25–33PubMedCrossRefGoogle Scholar
  56. Lladó S, Solanas AM, De Lapuente J, Borràs M, Viñas M (2012) A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435-436:262–269PubMedCrossRefGoogle Scholar
  57. Lopes PRM, Bidoia ED (2009) Evaluation of the biodegradation of different types of lubricant oils in liquid médium. Braz Arch Biol Technol 52:1285–1290CrossRefGoogle Scholar
  58. Lopes PRM, Domingues RF, Bidoia ED (2008) Descarte de embalagens e quantificação do volume de óleo lubrificante residual no município de Rio Claro-SP. HOLOS Environ 8:166–178CrossRefGoogle Scholar
  59. Lors C, Ryngaert A, Périé F, Diels L, Damidot D (2010) Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere 81:1263–1271PubMedCrossRefGoogle Scholar
  60. Lovaglio RB, Santos FJ, Jafelicci M Jr, Contiero J (2011) Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf B Biointerfaces 85:301–305PubMedCrossRefGoogle Scholar
  61. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14ª ed. Pearson Education, New YorkGoogle Scholar
  62. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633PubMedCrossRefGoogle Scholar
  63. Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon sources – a review. J Surfactants Deterg 2:237–241CrossRefGoogle Scholar
  64. Makkar RS, Rockne KJ (2003) Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 22:2280–2292PubMedCrossRefGoogle Scholar
  65. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mang T, Gosalia A (2017) Lubricants and their market. In: Mang T, Dresel W (eds) Lubricants and lubrication, 3rd edn. Wiley-VCH, Weinheim, pp 1–9Google Scholar
  67. Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565PubMedCrossRefGoogle Scholar
  68. Martins M, Costa PM, Ferreira AM, Costa MH (2013) Comparative DNA damage and oxidative effects of carcinogenic and non-carcinogenic sediment-bound PAHs in the gills of a bivalve. Aquat Toxicol 142-143:85–95PubMedCrossRefGoogle Scholar
  69. Meneses DP, Gudiña EJ, Fernandes F, Gonçalves LRB, Rodrigues LR, Rodrigues S (2017) The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Microbiol Res 204:40–47PubMedCrossRefGoogle Scholar
  70. Mille G, Guiliano M, Asia L, Malleret L, Jalaluddin N (2006) Sources of hydrocarbons in sediments of the Bay of Fort France (Martinique). Chemosphere 64:1062–1073PubMedCrossRefGoogle Scholar
  71. Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81CrossRefGoogle Scholar
  72. Moldes AB, Torrado AM, Barral MT, Domínguez JM (2007) Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J Agric Food Chem 55:4481–4486PubMedCrossRefGoogle Scholar
  73. Mondal MH, Sarkar A, Maiti TK, Saha B (2017) Microbial assisted (Pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies. J Mol Liq 242:873–878CrossRefGoogle Scholar
  74. Montagnolli RN, Bidoia ED (2012) Petroleum derivatives biodegradation: environmental impact and bioremediation strategies. AmazonGoogle Scholar
  75. Montagnolli RN, Lopes PRM, Bidoia ED (2009) Applied models to biodegradation kinetics of lubricant and vegetable oils in wastewater. Int Biodeterior Biodegradation 63:297–305CrossRefGoogle Scholar
  76. Monteiro AS, Coutinho JOPA, Júnior AC, Rosa CA, Siqueira EP, Santos VL (2009) Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents. J Basic Microbiol 49:553–563PubMedCrossRefGoogle Scholar
  77. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:09–515CrossRefGoogle Scholar
  78. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids-next generation surfactants? J Biotechnol 162:366–380PubMedCrossRefGoogle Scholar
  79. Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378CrossRefGoogle Scholar
  80. Nee’Nigam PS, Pandey (2009) A Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, p 466Google Scholar
  81. Nievas ML, Commendatore MG, Esteves JL, Bucala V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Mater 154:96–104PubMedCrossRefGoogle Scholar
  82. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Biores Technol 97:336–341CrossRefGoogle Scholar
  83. Nitschke M, Ferraz C, Pastore GM (2004) Selection of microorganisms for biosurfactant production using agro industrial wastes. Braz J Microbiol 35:81–85CrossRefGoogle Scholar
  84. Nitschke M, Costa SGVAO, Contiero J (2005a) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600PubMedCrossRefGoogle Scholar
  85. Nitschke M, Costa SGVAO, Hadad R, Gonçalves LA, Eberlin MN, Contiero J (2005b) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Progress 21:1562–1566CrossRefGoogle Scholar
  86. Nitschke M, Costa SGVAO, Contiero J (2011) Rhamnolipids and PHAs: recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem 46:621–630CrossRefGoogle Scholar
  87. Oluwaseun AC, Kola OJ, Mishra P, Singh JR, Singh AK, Cameotra SS, Micheal BO (2017) Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustain Chem Pharm 6:26–36CrossRefGoogle Scholar
  88. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125PubMedCrossRefGoogle Scholar
  89. Pagnout C, Rast C, Veber AM, Poupin P, Férard JF (2006) Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11. Ecotoxicol Environ Saf 65:151–158PubMedCrossRefGoogle Scholar
  90. Patel MK, Theiss A, Worrell E (1999) Surfactant production and use in Germany: Resource requirements and CO2 emissions. Resour Conserv Recyc 25:61–78CrossRefGoogle Scholar
  91. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767PubMedPubMedCentralCrossRefGoogle Scholar
  92. Plaza GA, Turek A, Król E, Szczygłowska R (2013) Antifungal and antibacterial properties of surfactin isolated from Bacillus subtilis growing on molasses. Afr J Microbiol Res 7:3165–3170CrossRefGoogle Scholar
  93. Prosser CM, Redman AD, Prince RC, Paumen ML, Letinski DJ, Butler JD (2016) Evaluating persistence of petroleum hydrocarbons in aerobic aqueous media. Chemosphere 155:542–549PubMedCrossRefGoogle Scholar
  94. Rahman KS, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Biores Technol 81:25–32CrossRefGoogle Scholar
  95. Rane AN, Baikar VV, Ravi Kumar DV, Deopurkar RL (2017) Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol 8:492PubMedPubMedCentralCrossRefGoogle Scholar
  96. Remichkova M, Danka G, Ivana R, Karpenko E, Shulga A, Galabov AS (2014) Anti-Herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Zeitschrift für Naturforschung C 63:75–81CrossRefGoogle Scholar
  97. Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, WU J, Jiang Y, Keenan BG, Castle AB, Haskell RF, Smith TF, Somasundaran P, Jarrell KA (2010) Use of sustainable chemistry to produce and acyl amino acid surfactant. Appl Microbiol Biotechnol 86:1387–1397PubMedCrossRefGoogle Scholar
  98. Richard JY, Vogel TM (1999) Characterization of a soil bacterial consortium capable of degrading diesel fuel. Int Biodeterior Biodegradation 44:93–100CrossRefGoogle Scholar
  99. Rocha MVP, Barreto RVG, Melo VMM, Gonçalves LRB (2009) Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl Biochem Biotechnol 155:366–378CrossRefGoogle Scholar
  100. Rosenberg E, Ron EZ (1997) Bioemulsans: Microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316PubMedCrossRefGoogle Scholar
  101. Sabaté J, Viñas M, Solanas A (2004) Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. Int Biodeterior Biodegradation 54:19–25CrossRefGoogle Scholar
  102. Sasayama T, Kamikanda Y, Shibasaki-Kitakawa N (2018) Process design for green and selective production of bio-based surfactant with heterogeneous resin catalyst. Chem Eng J 334:2231–2237CrossRefGoogle Scholar
  103. Scheibel JJ (2004) The evolution of anionic surfactant technology to meet the requirements of the laundry detergent industry. J Surfactants Deterg 7:319–328CrossRefGoogle Scholar
  104. Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation based bioremediation of diesel fuel: field demonstration. Biodegradation 12:311–316PubMedCrossRefGoogle Scholar
  105. Shao C, Liu L, Gang H, Yang S, Mu B (2015) Structural diversity of the microbial surfactin derivatives from selective esterification approach. Int J Mol Sci 16:1855–1872PubMedPubMedCentralCrossRefGoogle Scholar
  106. Silva RCFS, Almeida DG, Meira HM, Silva EJ, Farias CBB, Rufino RD, Luna JM, Sarubbo LA (2017) Production and characterization of a new biosurfactant from Pseudomonas cepacia grown in low-cost fermentative medium and its application in the oil industry. Biocatal Agric Biotechnol 12:206–215CrossRefGoogle Scholar
  107. Simpanen S, Mäkelä R, Mikola J, Silvennoinen H, Romantschuk M (2016) Bioremediation of creosote contaminated soil in both laboratory and field scale: Investigating the ability of methyl-β-cyclodextrin to enhance biostimulation. Int Biodeterior Biodegrad 106:117–126CrossRefGoogle Scholar
  108. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121PubMedCrossRefGoogle Scholar
  109. Smyth TJP, Perfumo A, Marchant R, Banat IM (2010) Isolation and analysis of low molecular weight microbial glycolipids. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlim, pp 3705–3723CrossRefGoogle Scholar
  110. Syldatk C, Wagner F (1987) Production of biosurfactants. Biosurf Biotechnol 25:89–120Google Scholar
  111. Syldatk C, Lang S, Matulovic U, Wagner F (1985) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z fur Naturforsch Sect C: Biosci 40:61–67CrossRefGoogle Scholar
  112. Tamada IS, Montagnolli RN, Lopes PRM, Bidoia ED (2012) Toxicological evaluation of vegetable oils and biodiesel in soil during the biodegradation process. Braz J Microbiol 43:1576–1581PubMedPubMedCentralCrossRefGoogle Scholar
  113. Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925CrossRefGoogle Scholar
  114. Thavasi R, Jayalakshm IS, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Biores Technol 102:3366–3372CrossRefGoogle Scholar
  115. Van Bogaert I, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme E (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34PubMedCrossRefGoogle Scholar
  116. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620PubMedCrossRefGoogle Scholar
  117. Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452PubMedCrossRefGoogle Scholar
  118. Wang SY, Kuo YC, Hong A, Chang YM, Kao CM (2016) Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemosphere 164:558–567PubMedCrossRefGoogle Scholar
  119. Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164CrossRefGoogle Scholar
  120. Yu L, Duan L, Naidu R, Semple KT (2018) Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture. Sci Total Environ 613-614:1140–1153 In pressPubMedCrossRefGoogle Scholar
  121. Zhang H, Tang J, Wang L, Liu J, Gurav RG, Sun K (2016) A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. J Environ Sci (China) 47:7–13CrossRefGoogle Scholar
  122. Zhao F, Shi R, Cui Q, Han S, Dong H, Zhang Y (2017) Biosurfactant production under diverse conditions by two kinds of biosurfactant-producing bacteria for microbial enhanced oil recovery. J Pet Sci Eng 157:124–130CrossRefGoogle Scholar
  123. Zobell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Paulo Renato Matos Lopes
    • 1
    Email author
  • Renato Nallin Montagnolli
    • 1
  • Jaqueline Matos Cruz
    • 1
  • Elis Marina Turini Claro
    • 1
  • Ederio Dino Bidoia
    • 1
  1. 1.College of Agricultural and Technological SciencesSão Paulo State University (Unesp)DracenaBrazil

Personalised recommendations