Advertisement

The Small-Scale Microbial Processes for Remediation of Sediments Contaminated with Hydrocarbons

  • Danusia Ferreira Lima
  • Antônio Fernando de Souza Queiroz
  • Camila Paim Dantas
  • Jessyca Beatriz Alves Palmeira
  • Cibele Rodrigues Costa
  • Olívia Maria Cordeiro de Oliveira
Chapter

Abstract

The accidents caused by the petroleum industry have caused several deleterious effects both in the environmental and economic fields, with the most affected being natural ecosystems. Among these, mangroves has been increasingly a center of great studies because of its great ecological, economic, and social importance and because it is one of the biosystems that suffers the greatest impacts. The use of biological processes to recover natural environments is gaining increasing importance throughout the world, especially in ecosystems affected by oil hydrocarbons. These methods are favored by being environmentally friendly, clear, lower cost, and easier to apply on a large scale and do not alter the balance of ecosystems. Currently one of the most applied biological techniques for the recovery of environments affected by petroleum activities is bioremediation, which consists of the use of microorganisms to decontaminate areas. The success of bioremediation is directly related to the physical and chemical properties of petroleum, the characteristics of the by-products generated by bioremediation processes, and the peculiarities of the affected ecosystems. Results of scientific research have corroborated that the decrease of hydrocarbon concentrations is directly related to the nutrient and microorganism rates present in the environment. However, this chapter presents a series of experiments with oil-contaminated sediments in laboratory scale, using the technique of biostimulation and bioaugmentation.

References

  1. Barakat AO, Qianb Y, Kimb M, Kennicutt MC (2001) Chemical characterization of naturally weathered oil residues in arid terrestrial environment in Al-Alamein, Egypt. Environ Int 27(4):291–310CrossRefGoogle Scholar
  2. Black-walkey method (1947)Google Scholar
  3. Blenkinsopp S, Sergy G, Doe K, Wohlgeschaffen G, Li K, Fingas M (1997) Evaluation of the toxicity of the weathered crude oil used at the Newfoundland Offshore Burn Experiment (NOBE) and the resultant burn residue. Arctic Mar Oilspill Program Tech Semin. Ministry of Supply and Services, Canada, 1:677–684Google Scholar
  4. Brown DM, Okoro S, van Gils J, van Spanning R, Bonte M, Hutchings T, Smith JW (2017) Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils. Sci Total Environ 596:284–292CrossRefGoogle Scholar
  5. Costa CR (2014) Biodegradação das frações do óleo da Bacia do recôncavo em sedimento de manguezal: Avaliação da eficiência de consórcios fúngicos associados à fibra de coco Salvador, UFBA, 2014, 91f. (Graduação em Oceanografia), Universidade Federal da Bahia, Salvador, 2014Google Scholar
  6. Costa CR, Lima DF, Oliveira OMC (2016) Biodegradação das frações de óleo em sedimento de manguezal – Avaliação da eficiência de consórcios fúngicos associados a fibra de coco. 1. ed. Saarbrücken, DE: Novas Edições Acadêmicas, 1:103–107Google Scholar
  7. Coulon F, Brassington KJ, Bazin R, Linnet PE, Thomas KA, Mitchell TR, Lethbridge G, Smith JW, Pollarda SJ (2012) Effect of fertilizer formulation and bioaugmentation on biodegradation and leaching of crude oils and refined products in soils. Environ Technol 33:1879–1893CrossRefGoogle Scholar
  8. Dantas CP (2016). Utilização de protótipo de biorreator de imersão temporária na biodegradação de petróleo em sedimento de manguezal. 108f. Dissertação (Mestrado Geoquímica do Petróleo e Meio Ambiente) –Universidade Federal da BahiaGoogle Scholar
  9. da Cruz GF, Marsaioli AJ (2012) Processos naturais de biodegradação do petróleo em reservatórios. Química Nova, São Paulo 35(8):147–153Google Scholar
  10. de Oliveira FJS (2001) Biorremediação de solo arenoso contaminado por óleo cru. 2001. 110f. Dissertação (Mestrado em Química ), Universidade Federal do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  11. Didyk BM, Simoneit BR (1989) Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature 342:65–70CrossRefGoogle Scholar
  12. Embrapa, Solos (1998) Sistema brasileiro de classificação de solos. Embrapa Solos, Rio de JaneiroGoogle Scholar
  13. Gaglianone PC, Trindade LAF (1988) Caracterização Geoquímica dos óleos da Bacia do Recôncavo. Geochim Bras 2(1):15–39Google Scholar
  14. Grasshoff K (1983) Determination of nitrite, nitrate, oxygen, Thiosulphate. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, Weinheim, New York pp 61–72, 81–84, 139–150Google Scholar
  15. Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592e598CrossRefGoogle Scholar
  16. Hunt EJ (1996) Petroleum geochemistry and geology, 2nd edn. W.H. Freeman & Company, New YorkGoogle Scholar
  17. Jednak T, Avdalovic J, Miletic S, Slavkovic-Beškoski L, Stankovic D, Milic J, Vrvic MM (2017) Transformation and synthesis of humic substances during bioremediation of petroleum hydrocarbons. Int Biodeterioration Biodegrad 122:47e52CrossRefGoogle Scholar
  18. Kennicutt MC (1998) The effect of biodegradation on crude oil bulk and molecular composition. Oil Chem Pollut 4:89–112CrossRefGoogle Scholar
  19. Killops SD, Killops VJ (2005) Introduction to organic geochemistry, 2nd edn. Blackwell Publishing, Malden 393pGoogle Scholar
  20. Leavitt ME, Brown KL (1994) Biostimulation versus bioaugmentation three case studies. In: Hinchee RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon bioremediation. Battle Press, Columbus, pp 72–79Google Scholar
  21. Lee K, Tremblay GH (1993) Bioremediation: application of slow-release fertilizers on low energy shorelines. In: Proceedings of the 1993 oil spill conference. American Petroleum Institute, Washington, DC, pp 449–454Google Scholar
  22. Lima DF, Oliveira OMCD, Cruz MJM, Triguis JA, Queiroz AFDS (2012) Bioremediation in mangrove sediments impacted by oil using two types of fertilizers NPK and OSMOCOTE, BrazilGoogle Scholar
  23. Lima DF (2010) Biorremediação em sedimentos impactados por petróleo na Baía de Todos os Santos, Bahia: avaliação da degradação de hidrocarbonetos saturados. 2000. 234f. Dissertação (Mestrado em Geologia Ambiental) – Universidade Federal da BahiaGoogle Scholar
  24. Lima DF (2014) Avaliação de processos geoquímicos e da eficiência de consórcio fúngico em testes de simulação da biorremediação em sedimento de manguezal contaminado com óleo. 2014. 224f. Tese (Doutorado em Geologia) – Universidade Federal da Bahia. Salvador, BahiaGoogle Scholar
  25. Lima DF, de Oliveira OMC, Cruz MJM (2011) Utilização dos fungos na biorremediação de substratos contaminados por petróleo: estado da arte. Cadernos de Geociências, Salvador 8(2):113–121Google Scholar
  26. Maciel CCS, Souza CS, Silva PA, Sousa MFVQ, Gusmão NB (2013) Cinética de degradação de querosene de aviação por Penicillium sp. através da bioestimulação. Revista Brasileira de Biociencias 11(1):23–31Google Scholar
  27. Mariano AP (2006) Avaliação do potencial de biorremediação de solos e de águas subterrâneas contaminados com óleo diesel. 162 f. 2006. Tese (doutorado) -Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas – Rio Claro, SP.Google Scholar
  28. Martins LR (2009) Avaliação do potencial biotecnológico de fungos brasileiros em reações de fungos brasileiros em reações de biotransformação e biorremediação. 203 f. Tese (doutorado) – Universidade Federal de Minas Gerais. Departamento de Química, 2009Google Scholar
  29. Mcmillen SJ, Kerr JM and Gray NR, (1993) Microcosm studies of factors that influence bioremediation of crude oils in soil, Exploration & Production Environments Conference, San Antonio, 7–10 March 1993, pp 389–400Google Scholar
  30. Obayagbona NO, Enabulele OI (2013) Biodegradation potentials of automobile workshop soil mycoflora on flow station petroleum sludge with an extra carbon source. J Microbiol Biotechnol Food Sci 3(1):19–25Google Scholar
  31. Olivieri R, Bacchin P, Robertiello A, Oddo N, Degen L, Tonolo A (1976) Microbial degradation of oil spills enhanced by a slow release fertilizer. Appl Environ Microbiol 31(5):629–634PubMedPubMedCentralGoogle Scholar
  32. Onyema MO, Osuji LC, Ofodile SE (2013) Geochemical fingerprinting of an oil impacted site, Niger Delta: source and weathering profile of aliphatic hydrocarbons. Researcher 5(10):16–21Google Scholar
  33. Overton EB, Mcfall JA, Mascarella SW, Steele CF, Antoine SA, Politzer IR, Laseter JL (1981) Identification of petroleum sources after a fire and oil spill. Int Oil Spill Conf Proc 1981(1):541–546CrossRefGoogle Scholar
  34. Palmeira JBA (2014). Estudo da Eficiência da Degradação do Óleo da Bacia de Campos através da Adição de Consórcio Fúngico e Nutriente. 91f. Trabalho de conclusão de curso (Oceanografia) – Universidade Federal da BahiaGoogle Scholar
  35. Pereira JRN, de Gomes EB, Soriano AU (2009) Biodegradação de hidrocarbonetos, 1ª edn. Escola de Química, Rio de Janeiro 76p. v.3Google Scholar
  36. Reichwald D (2011) Contribuição à gestão ambiental: a Biorremediação de solo contaminado com petróleo. 44f. Especialização (Gestão Ambiental). Universidade Candido Mendes, Rio de Janeiro Departamento AVM Faculdade IntegradaGoogle Scholar
  37. Ramaswami A, Luthy RG (1997) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems. 1. Model development. Environ Sci Technol 31(8):2260–2267CrossRefGoogle Scholar
  38. Reyes CY (2015) Simulação do intemperismo em mesocosmos para petróleos brasileiros. 288f. Tese (Doutorado em Geologia) – Instituto de Geociências, Universidade Federal da Bahia 2015.(no prelo)Google Scholar
  39. Rosa AP, Trigüis JA (2006) Estudos experimentais da análise do processo de biorremediação na mitigação do impacto ambiental. Geochim Bras 20(1):147–153Google Scholar
  40. Roy A et al (2018) Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour Technol 253(2018):22–32CrossRefGoogle Scholar
  41. Safdari MS, Kariminia HR, Rahmati M, Fazlollahi F, Polasko A, Mahendra S, Fletcher TH (2018) Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil. J Hazard Mater 342:270–278CrossRefGoogle Scholar
  42. Santos R d M (2007) Avaliação da adição do pó da casca de coco verde, como material estruturante, na biorremediação de solo contaminado com petróleo. Universidade Federal do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  43. Singh A, Ward OP (eds) (2004) Biodegradation and bioremediation. Springer, BerlinGoogle Scholar
  44. Srivastava S, Thakur IS (2006) Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour Technol 97(10):1167–1173CrossRefGoogle Scholar
  45. Tissot BP, Welte DH (1984) Petroleum Formation and Occurrence (Second Revised and Enlarged Edition). Springer, Berlin/New York/TokyoCrossRefGoogle Scholar
  46. Ururahy AFP (1998) Biodegradação de resíduo oleoso proveniente de refinaria de petróleo. 1998. 324f. Tese (Doutorado em Tecnologia de Processos Químicos e Bioquímicos), Universidade Federal do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  47. Vallejo V, Salgado L, Roldan F (2005) Evaluación de la bioestimulación en la biodegradación de TPHs en suelos contaminados con petróleo Bioestimulation process during the biodegradation of TPH in oil-contaminated soil. Rev Colomb Biotechnol 7(2):67–78Google Scholar
  48. Venosa AD, Stephen JR, Macnaughton SJ, Chang Y, White DC (1999) Microbial population changes durin g bioremediation of an experimental oil spill. In: Proceedings of the 8th international symposium on microbial ecology, Canada. Atlantic Canada Society for Microbial Ecology, HalifaxGoogle Scholar
  49. Wang C et al (2013) Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Mar Pollut Bull 71(1):64–68Google Scholar
  50. Wang X, Bartha R (1990) Effects of bioremediation on residues, activity and toxicity in soil contaminated by fuel spills. Soil Biol Biochem 22(4):501–505CrossRefGoogle Scholar
  51. Wolfe DA, Hameedi MJ, Galt JA, Watabayashi G, Short J, O'claire C, Rice S, Michel J, Payne JR, Braddock J, Hanna S (1994) The fate of the oil spilled from the Exxon Valdez. Environ Sci Technol 28(13):560A–568ACrossRefGoogle Scholar
  52. Xia WX, Li JC, Zheng XL, Bi XJ, Shao JL (2006) Enhanced biodegradation of diesel oil in seawater supplemented with nutrients. Eng Life Sci 6(1):80–85CrossRefGoogle Scholar
  53. Yanto DHY, Tachibana S (2013) Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp. NG007. Int Biodeter Biodegr 85:438e450CrossRefGoogle Scholar
  54. Zafra G, Taylor TD, Absalón AE, Cortés-Espinosa DV (2016) Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. J Hazard Mater 318:702–710CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Danusia Ferreira Lima
    • 1
  • Antônio Fernando de Souza Queiroz
    • 1
  • Camila Paim Dantas
    • 1
  • Jessyca Beatriz Alves Palmeira
    • 2
  • Cibele Rodrigues Costa
    • 3
  • Olívia Maria Cordeiro de Oliveira
    • 1
  1. 1.Nucleus of Environmental Studies (NEA)/Institute of Geosciences (IGEO)Federal University of Bahia (UFBA)SalvadorBrazil
  2. 2.Laboratory of Oil, Natural Gas and Biofuels/Polytechnic SchoolFederal University of Bahia (UFBA)SalvadorBrazil
  3. 3.Laboratory of Ecology and Management of Coastal and Estuarine Ecosystems (LEGECE)/Department of Oceanography (DOCEAN)Federal University of Pernambuco (UFPE)RecifeBrazil

Personalised recommendations