Double Resonance Raman Spectroscopy of Two-Dimensional Materials

  • R. SaitoEmail author
  • Y. Tatsumi
  • T. Yang
  • H. Guo
  • S. Huang
  • L. Zhou
  • M. S. Dresselhaus
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)


In this chapter, we overview double resonance Raman spectra of two dimensional materials. Many weak Raman spectral peaks are observed in the two dimensional materials which can be attributed to second order, double resonance Raman spectra. It is useful for material characterization to understand not only first order Raman spectra but also second order Raman spectra since the second order Raman spectra has more information on electronic structure of the materials than the first order Raman spectra. Combined with the conventional first order resonance Raman theory, we will explain why the double resonance condition can be strong in the two dimensional materials. Since the double resonance Raman spectra give the information of phonon with non-zero wavevectors in the Brillouin zone, both the resonant wavevector and corresponding Raman spectra can shift with changing the incident laser energy. Here we will discuss the physics of double resonance Raman spectra of graphene, transition metal dichalcogenides by theoretical analysis using the first principles calculation.



All authors sincerely acknowledge Professor Mildred S. Dresselhaus who passed away on February 20th, 2017, before finishing this article. We all thank her for supervising us Raman spectroscopy of nano carbons and 2D materials. R.S. acknowledges JSPS KAKENHI Grant Numbers JP25286005, JP225107005, JP15K21722 and JP18H01810. T.Y. acknowledges the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (No. U1537204) and National Basic Research Program (No.2017YFA0206301) of China. H.H.G. acknowledges the support by the Liaoning Province Doctor Startup Fund (Grant 201601325) and Liaoning Shihua University Grant 2016XJJ-044. S.H. and L.Z. acknowledge financial support by STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319, EFRI 2-DARE(EFMA-1542815), NSF grant DMR-1507806, and the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies (Grant No. 023674).


  1. 1.
    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Adv. Phys. 60, 413 (2011)Google Scholar
  2. 2.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)Google Scholar
  3. 3.
    R. Saito, A. Grüneis, G.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, C. Fantini, M.A. Pimenta, A.G. Souza Filho, New J. Phys. 5, 157.1 (2003)Google Scholar
  4. 4.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)Google Scholar
  5. 5.
    A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, New J. Phys. 5, 139.1 (2003)Google Scholar
  6. 6.
    A. Grüneis, R. Saito, G.G. Samsonidze, T. Kimura, M.A. Pimenta, A. Jorio, A.G.S. Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 67, 165402 (2003)Google Scholar
  7. 7.
    J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 392, 383 (2004)Google Scholar
  8. 8.
    J. Jiang, R. Saito, G.G. Samsonidze, S.G. Chou, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 72, 235408 (2005)Google Scholar
  9. 9.
    L.V. Hove, Phys. Rev. 89, 1189 (1953)Google Scholar
  10. 10.
    H. Liu, H. Guo, T. Yang, Z. Zhang, Y. Kumamoto, C. Shen, Y. Hsu, R. Saito, S. Kawata, Phys. Chem. Chem. Phys. 17, 14561 (2015)Google Scholar
  11. 11.
    R. Saito, A.R.T. Nugraha, E.H. Hasdeo, S. Siregar, H. Guo, T. Yang, Phys. Status Solidi B 252, 2363 (2015)Google Scholar
  12. 12.
    R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002)Google Scholar
  13. 13.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, et al., J. Phys. Condensed Matter 21(39), 395502 (2009)Google Scholar
  14. 14.
    F. Aryasetiawan, O. Gunnarsson, Reports on Progress in Physics 61(3), 237 (1998)Google Scholar
  15. 15.
    S. Albrecht, L. Reining, R. Del Sole, G. Onida, Phys. Rev. Lett. 80, 4510 (1998)Google Scholar
  16. 16.
    M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998)Google Scholar
  17. 17.
    J. Jiang, R. Saito, G.G. Samsonidze, A. Jorio, S.G. Chou, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 75, 035407 (2007)Google Scholar
  18. 18.
    J. Jiang, R. Saito, K. Sato, J.S. Park, G.G. Samsonidze, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 75, 035405 (2007)Google Scholar
  19. 19.
    S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)Google Scholar
  20. 20.
    R. Saito, Y. Tatsumi, S. Huang, X. Ling, M.S. Dresselhaus, J. Phys. Cond. Matt. 28(35), 353002 (2016)Google Scholar
  21. 21.
    P. Ayria, A.R.T. Nugraha, E.H. Hasdeo, T.R. Czank, S. Tanaka, R. Saito, Phys. Rev. B 92, 195148 (2015)Google Scholar
  22. 22.
    J. Noffsinger, F. Giustino, B.D. Malone, C.H. Park, S.G. Louie, M.L. Cohen, Comput. Phys. Commun. 181, 2140 (2010)Google Scholar
  23. 23.
    A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH Verlag GmbH & Co KGaA, WeinHeim, Germany, 2010)Google Scholar
  24. 24.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)Google Scholar
  25. 25.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)Google Scholar
  26. 26.
    J.S. Park, A. Reina Cecco, R. Saito, J. Jiang, G. Dresselhaus, M.S. Dresselhaus, Carbon 47, 1303 (2009)Google Scholar
  27. 27.
    L.G. Cançado, M.A. Pimenta, R. Saito, A. Jorio, L.O. Ladeira, A. Grüneis, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 66, 035415 (2002)Google Scholar
  28. 28.
    P.H. Tan, C.Y. Hu, J. Dong, W.C. Shen, B.F. Zhang, Phys. Rev. B 64, 214301 (2001)Google Scholar
  29. 29.
    J. Maultzsch, S. Reich, C. Thomsen, Phys. Rev. B 70, 155403 (2004)Google Scholar
  30. 30.
    C. Cong, T. Yu, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, ACS Nano 5, 1600 (2011)Google Scholar
  31. 31.
    V.W. Brar, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, R. Saito, A.K. Swan, M.S. Ünlü, B.B. Goldberg, A.G. Souza Filho, A. Jorio, Phys. Rev. B 66, 155418 (2002)Google Scholar
  32. 32.
    L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Phys. Rev. B 76, 201401 (2007)Google Scholar
  33. 33.
    P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A.C. Ferrari, Nat. Mater. 11(4), 294 (2012)Google Scholar
  34. 34.
    P.H. Tan, J.B. Wu, W.P. Han, W.J. Zhao, X. Zhang, H. Wang, Y.F. Wang, Phys. Rev. B 89, 235404 (2014)Google Scholar
  35. 35.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)Google Scholar
  36. 36.
    K.A.N. Duerloo, Y. Li, E.J. Reed, Nat. Commun. 5, 5214 (2014)Google Scholar
  37. 37.
    C. Ruppert, O.B. Aslan, T.F. Heinz, Nano Lett. 14(11), 6231 (2014)Google Scholar
  38. 38.
    N.R. Pradhan, D. Rhodes, S. Feng, Y. Xin, S. Memaran, B.H. Moon, H. Terrones, M. Terrones, L. Balicas, ACS Nano 8(6), 5911 (2014)Google Scholar
  39. 39.
    M. Yamamoto, S.T. Wang, M.Y. Ni, Y.F. Lin, S.L. Li, S. Aikawa, W.B. Jian, K. Ueno, K. Wakabayashi, K. Tsukagoshi, ACS Nano 8(4), 3895 (2014)Google Scholar
  40. 40.
    H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa, K. Ueno, K. Tsukagoshi, Z. Zhang, M. Dresselhaus, R. Saito, Phys. Rev. B 91, 205415 (2015)Google Scholar
  41. 41.
    S.Y. Chen, T. Goldstein, D. Venkataraman, A. Ramasubramaniam, J. Yan, Nano Lett. 16(9), 5852 (2016)Google Scholar
  42. 42.
    K.F. Mak, J. Shan, T.F. Heinz, Phys. Rev. Lett. 104, 176404 (2010)Google Scholar
  43. 43.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10(4), 1271 (2010)Google Scholar
  44. 44.
    M.A. Pimenta, E. del Corro, B.R. Carvalho, C. Fantini, L.M. Malard, Acc. Chem. Res. 48(1), 41 (2014)Google Scholar
  45. 45.
    B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, J. Raman Spectrosc. 44, 92 (2013)Google Scholar
  46. 46.
    A. Kumar, P. Ahluwalia, Eur. Phys. J. B 85(6), 186 (2012)Google Scholar
  47. 47.
    Y. Ding, Y.L. Wang, J. Ni, L. Shi, S.Q. Shi, W.H. Tang, Physica B Condensed Matter 406(11), 2254 (2011)Google Scholar
  48. 48.
    D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)Google Scholar
  49. 49.
    Y. Cheng, U. Schwingenschl\(\ddot {o}\)gl, MoS 2: A First-Principles Perspective (Ed. Zhiming M. Wang, Springer, Berlin, 2014)Google Scholar
  50. 50.
    D.Y. Qiu, F.H. da Jornada, S.G. Louie, Phys. Rev. Lett. 111, 216805 (2013)Google Scholar
  51. 51.
    H.L. Liu, C.C. Shen, S.H. Su, C.L. Hsu, M.Y. Li, L.J. Li, Appl. Phys. Lett. 105(20), 201905 (2014)Google Scholar
  52. 52.
    J.W. Park, H.S. So, S. Kim, S.H. Choi, H. Lee, J. Lee, C. Lee, Y. Kim, J. Appl. Phys. 116(18), 183509 (2014)Google Scholar
  53. 53.
    Y. Tatsumi, K. Ghalamkari, R. Saito, Phys. Rev. B 94, 235408 (2016)Google Scholar
  54. 54.
    C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. Dresselhaus, M.S. Dresselhaus, ACS Nano 5, 8760 (2011)Google Scholar
  55. 55.
    P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84, 035433 (2011)Google Scholar
  56. 56.
    Z.Y. Zhu, Y.C. Cheng, U. Schwingenschl\(\ddot {o}\)gl, Phys. Rev. B 84, 153402 (2011)Google Scholar
  57. 57.
    X. Ling, S. Huang, E.H. Hasdeo, L. Liang, W.M. Parkin, Y. Tatsumi, A.R.T. Nugraha, A.A. Puretzky, P.M. Das, B.G. Sumpter, D.B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, M.S. Dresselhaus, Nano Lett. 16(0), 2260 (2016)Google Scholar
  58. 58.
    S. Huang, Y. Tatsumi, X. Ling, H. Guo, Z. Wang, G. Watson, A.A. Puretzky, D.B. Geohegan, J. Kong, J. Li, T. Yang, R. Saito, M.S. Dresselhaus, ACS Nano 10(9), 8964 (2016)Google Scholar
  59. 59.
    L. Zhou, S. Huang, Y. Tatsumi, L. Wu, H. Guo, Y. Bie, K. Ueno, T. Yang, Y. Zhu, J. Kong, R. Saito, M.S. Dresselhaus, J. Am. Chem. Soc. (2017)Google Scholar
  60. 60.
    P. Ayria, S. Tanaka, A.R.T. Nugraha, M.S. Dresselhaus, R. Saito, Phys. Rev. B. 94, 075429 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. Saito
    • 1
    Email author
  • Y. Tatsumi
    • 1
  • T. Yang
    • 2
  • H. Guo
    • 3
  • S. Huang
    • 4
  • L. Zhou
    • 5
    • 6
  • M. S. Dresselhaus
  1. 1.Department of PhysicsTohoku UniversitySendaiJapan
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.College of SciencesLiaoning Shihua UniversityFushunChina
  4. 4.Electrical Engineering DepartmentPennsylvania State UniversityUniversity ParkUSA
  5. 5.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  6. 6.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations