Advertisement

Raman Spectroscopy Study of Two-Dimensional Materials Under Strain

  • Chunxiao Cong
  • Yanlong Wang
  • Ting Yu
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

The exceptionally high stretchability of atomically thin materials enables extensive manipulation of their properties and exploration of rich physics through the application of external strain. Therefore, it is important to understand strain effects on two-dimensional materials both for fundamental studies and developing various applications, especially in flexible and wearable devices. In this chapter, we will give several examples of how Raman spectroscopy can be utilized to investigate the strain effects on fundamental properties of atomically thin materials.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89–108 (2010)CrossRefGoogle Scholar
  3. 3.
    A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRefGoogle Scholar
  4. 4.
    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)CrossRefGoogle Scholar
  6. 6.
    L.M. Malard, D.L. Mafra, S.K. Doorn, M.A. Pimenta, Resonance Raman scattering in graphene: probing phonons and electrons. Solid State Commun. 149, 1136–1139 (2009)CrossRefGoogle Scholar
  7. 7.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802-1–166802-4 (2007)Google Scholar
  9. 9.
    K. Kang, D. Abdula, D.G. Cahill, M. Shim, Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes Raman scattering. Phys. Rev. B 81, 165405-1–165405-6 (2010)Google Scholar
  10. 10.
    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Cançado, M. Pimenta, R. Saito, A. Jorio, L. Ladeira, A. Grueneis, A. Souza-Filho, G. Dresselhaus, M. Dresselhaus, Stokes and anti-stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 66, 035415 (2002)CrossRefGoogle Scholar
  12. 12.
    Y.M. You, Z.H. Ni, T. Yu, Z.X. Shen, Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 93, 163112-1–163112-3 (2008)Google Scholar
  13. 13.
    C. Cong, T. Yu, H. Wang, Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 4, 3175–3180 (2010)CrossRefGoogle Scholar
  14. 14.
    T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, Z. Shen, Raman mapping investigation of graphene on transparent flexible substrate: the strain effect. J. Phys. Chem. C 112, 12602–12605 (2008)CrossRefGoogle Scholar
  15. 15.
    Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008)CrossRefGoogle Scholar
  16. 16.
    C.A. Cooper, R.J. Young, Investigation of structure/property relationships in particulate composites through the use of Raman spectroscopy. J. Raman Spectrosc. 30, 929–938 (1999)CrossRefGoogle Scholar
  17. 17.
    T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433-1–205433-8 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Huang, H. Yan, C. Chen, D. Song, T.F. Heinz, J. Hone, Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A 106, 7304–7308 (2009)CrossRefGoogle Scholar
  19. 19.
    B. Kelly, Physics of graphite (Applied Science, London, 1981), p. 477Google Scholar
  20. 20.
    D. Yoon, Y.-W. Son, H. Cheong, Strain-dependent splitting of the double-resonance Raman scattering band in graphene. Phys. Rev. Lett. 106, 155502-1–155502-4 (2011)Google Scholar
  21. 21.
    K. Mak, C. Lee, J. Hone, J. Shan, T. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805-1–136805-4 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)CrossRefGoogle Scholar
  23. 23.
    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2012)CrossRefGoogle Scholar
  24. 24.
    B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Radisavljevic, J. Brivio, V. Giacometti, A. Kis, A. Radenovic, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)CrossRefGoogle Scholar
  26. 26.
    R.C. Cooper, C. Lee, C.A. Marianetti, X. Wei, J. Hone, J.W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 87, 035423-1–035423-11 (2013)Google Scholar
  27. 27.
    S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, C. Cong, C. Qiu, T. Yu, Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9, 2857–2861 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, T. Yu, Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8, 2562–2572 (2015)CrossRefGoogle Scholar
  30. 30.
    H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013)CrossRefGoogle Scholar
  31. 31.
    H.-X. Zhong, S. Gao, J.-J. Shi, L. Yang, Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 92, 115438-1–115438-7 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, H. Wang, Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 8, 3651–3661 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S.S. Li, A. Suslu, F.M. Peeters, Q. Liu, J. Li, S. Tongay, Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660–1666 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater 1, 025001 (2014)CrossRefGoogle Scholar
  35. 35.
    X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112, 4523–4530 (2015)CrossRefGoogle Scholar
  36. 36.
    G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, M. Hu, G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17, 4854–4858 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Wu, N. Mao, L. Xie, H. Xu, J. Zhang, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 54, 2366–2369 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Jain, A.J. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015)CrossRefGoogle Scholar
  41. 41.
    H.B. Ribeiro, M.A. Pimenta, C.J.S. de Matos, R.L. Moreira, A.S. Rodin, J.D. Zapata, E.A.T. de Souza, A.H. Castro Neto, Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9, 4270–4276 (2015)CrossRefGoogle Scholar
  42. 42.
    Y. Wang, C. Cong, R. Fei, W. Yang, Y. Chen, B. Cao, L. Yang, T. Yu, Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 8, 3944–3953 (2015)CrossRefGoogle Scholar
  43. 43.
    I. Stenger, L. Schué, M. Boukhicha, B. Berini, B. Plaçais, A. Loiseau, J. Barjon, Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Mater 4, 031003 (2017)CrossRefGoogle Scholar
  44. 44.
    A. Falin, Q. Cai, E.J.G. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S. Huang, K. Watanabe, T. Taniguchi, M.R. Barnett, Y. Chen, R.S. Ruoff, L.H. Li, Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017)CrossRefGoogle Scholar
  45. 45.
    R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011)CrossRefGoogle Scholar
  46. 46.
    R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6, 1812–1816 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Information Science and TechnologyFudan UniversityShanghaiChina
  2. 2.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  3. 3.Key Laboratory of Chemical Lasers, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations