Raman Spectroscopy of van der Waals Heterostructures

  • C. H. LuiEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)


The research of two-dimensional (2D) atomic crystals has progressed rapidly since the isolation of graphene in 2004 [1, 2]. The family of 2D crystals now include many different types of materials, including metals (e.g. graphene, NbSe2), semiconductors (e.g. phosphorene, MoS2, WSe2), insulators (e.g. BN), superconductors and charge-density-wave materials (e.g. NbSe2 and TiSe2). Alongside with the rapid development of individual 2D materials, the research frontier has also advanced to explore their hybrid systems [3, 4]. In particular, the flat and inert surfaces of 2D materials enable the construction of heterogeneous stacks of different 2D crystals with atomically sharp interfaces, coupled vertically only by van der Waals forces. These van der Waals heterostructures exhibit many unique properties that cannot be realized in individual 2D crystals [3, 4]. For instance, graphene on hexagonal boron nitride (BN) can exhibit the Hofstadter’s butterfly phenomenon because of the nanoscale periodic interaction between the graphene and BN lattices [5–7]. Transition metal dichalcogenide (TMD) heterostructures can host long-lived interlayer excitons due to the staggered band alignment between different TMD layers [8]. Electronic and optoelectronic devices made from van der Waals heterostructures can exhibit performance superior to that of traditional devices with lateral 2D junctions [9–11]. More generally, the 2D building blocks can be combined to form more complex structures. By incorporating the unique properties of each class of 2D crystal (e.g., semiconducting TMDs, insulating BN and metallic graphene), integrated circuits can in principle be constructed entirely with 2D materials. Such 2D systems of electronics, once realized, could open a route to post-silicon technology.


  1. 1.
    A.K. Geim, Science 324, 1530 (2009)Google Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)Google Scholar
  3. 3.
    A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)Google Scholar
  4. 4.
    K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353, 9439 (2016)Google Scholar
  5. 5.
    C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, P. Kim, Nature 497, 598 (2013)Google Scholar
  6. 6.
    L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil, A.A. Patel, A. Mishchenko, A.S. Mayorov, C.R. Woods, J.R. Wallbank, M. Mucha-Kruczynski, B.A. Piot, M. Potemski, I.V. Grigorieva, K.S. Novoselov, F. Guinea, V.I. Fal’ko, A.K. Geim, Nature 497, 594 (2013)Google Scholar
  7. 7.
    B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Science 340, 1427 (2013)Google Scholar
  8. 8.
    P. Rivera, K.L. Seyler, H. Yu, J.R. Schaibley, J. Yan, D.G. Mandrus, W. Yao, X. Xu, Science 351, 688 (2016)Google Scholar
  9. 9.
    L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H.C. Neto, K.S. Novoselov, Science 340, 1311 (2013)Google Scholar
  10. 10.
    L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012)Google Scholar
  11. 11.
    C.-H. Lee, G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, P. Kim, Nat. Nanotechnol. 9, 676 (2014)Google Scholar
  12. 12.
    C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)Google Scholar
  13. 13.
    A.V. Kretinin, Y. Cao, J.S. Tu, G.L. Yu, R. Jalil, K.S. Novoselov, S.J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C.R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A.K. Geim, R.V. Gorbachev, Nano Lett. 14, 3270 (2014)Google Scholar
  14. 14.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)Google Scholar
  15. 15.
    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, ACS Nano 7, 791 (2012)Google Scholar
  16. 16.
    Y. Liang, S. Huang, R. Soklaski, L. Yang, Appl. Phys. Lett. 103, 042106 (2013)Google Scholar
  17. 17.
    W. Qianwen, W. Ping, C. Gengyu, H. Min, J. Phys. D: Appl. Phys. 46, 505308 (2013)Google Scholar
  18. 18.
    H.-P. Komsa, A.V. Krasheninnikov, Phys. Rev. B 88, 085318 (2013)Google Scholar
  19. 19.
    X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nat. Nanotechnol. 9, 682 (2014)Google Scholar
  20. 20.
    C.H. Lui, Z. Ye, C. Keiser, X. Xiao, R. He, Nano Lett. 14, 4615–4621 (2014)Google Scholar
  21. 21.
    C.H. Lui, Z. Ye, C. Keiser, E.B. Barros, R. He, Appl. Phys. Lett. 106, 041904 (2015)Google Scholar
  22. 22.
    C.H. Lui, T.F. Heinz, Phys. Rev. B 87, 121404(R) (2013)Google Scholar
  23. 23.
    P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A.C. Ferrari, Nat. Mater. 11, 294 (2012)Google Scholar
  24. 24.
    Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Nano Lett. 13, 1007 (2013)Google Scholar
  25. 25.
    H. Rui, B. Jeremiah Van, Y. Jia-An, X. Xiaoxiang, Y. Zhipeng, Y. Gaihua, I.H. Lu, S.M. Leong, C.H. Lui, 2D Materials 3, 031008 (2016)Google Scholar
  26. 26.
    R. He, J.-A. Yan, Z. Yin, Z. Ye, G. Ye, J. Cheng, J. Li, C.H. Lui, Nano Lett. 16, 1404 (2016)Google Scholar
  27. 27.
    C.H. Lui, Z. Ye, C. Ji, K.-C. Chiu, C.-T. Chou, T.I. Andersen, C. Means-Shively, H. Anderson, J.-M. Wu, T. Kidd, Y.-H. Lee, R. He, Phys. Rev. B 91, 165403 (2015)Google Scholar
  28. 28.
    R. He, T.-F. Chung, C. Delaney, C. Keiser, L.A. Jauregui, P.M. Shand, C.C. Chancey, Y. Wang, J. Bao, Y.P. Chen, Nano Lett. 13, 3594 (2013)Google Scholar
  29. 29.
    A.M. van der Zande, J. Kunstmann, A. Chernikov, D.A. Chenet, Y. You, X. Zhang, P.Y. Huang, T.C. Berkelbach, L. Wang, F. Zhang, M.S. Hybertsen, D.A. Muller, D.R. Reichman, T.F. Heinz, J.C. Hone, Nano Lett. 14, 3869 (2014)Google Scholar
  30. 30.
    L.Z. Kaihui Liu, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. Wang, Nat. Commun. 5, 4966 (2014)Google Scholar
  31. 31.
    A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.-H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Nat. Mater. 12, 554 (2013)Google Scholar
  32. 32.
    J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B.S. Clausen, E. Laegsgaard, F. Besenbacher, Nat. Nanotechnol. 2, 53 (2007)Google Scholar
  33. 33.
    J. Kang, J. Li, S.-S. Li, J.-B. Xia, L.-W. Wang, Nano Lett. 13, 5485 (2013)Google Scholar
  34. 34.
    L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, Science 342, 614 (2013)Google Scholar
  35. 35.
    M. Yankowitz, J. Xue, D. Cormode, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B.J. LeRoy, Nat. Phys. 8, 382 (2012)Google Scholar
  36. 36.
    C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo, X. Lin, G.L. Yu, Y. Cao, R.V. Gorbachev, A.V. Kretinin, J. Park, L.A. Ponomarenko, M.I. Katsnelson, Y.N. Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H.J. Gao, A.K. Geim, K.S. Novoselov, Nat. Phys. 10, 451 (2014)Google Scholar
  37. 37.
    A. Eckmann, J. Park, H. Yang, D. Elias, A.S. Mayorov, G. Yu, R. Jalil, K.S. Novoselov, R.V. Gorbachev, M. Lazzeri, A.K. Geim, C. Casiraghi, Nano Lett. 13, 5242 (2013)Google Scholar
  38. 38.
    H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13, 3447 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaRiversideUSA

Personalised recommendations