Advertisement

Raman Imaging of Two Dimensional Materials

  • Xuhong An
  • Zhenhua NiEmail author
  • Zexiang ShenEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

Raman imaging is a powerful technique that can provide the spatial distribution of the properties of the micro-/nano- material. Different parameters of the Raman peaks, e.g. height/area, position, full width at half maximum (FWHM), and also ratios/differences between peaks, can be used to construct the Raman imaging and provide valuable information for the study of 2D materials and heterostructure. In this chapter, we will introduce the basic principle of Raman imaging, and also its application in the study of 2D materials, including the effects of thickness and stacking configurations, heterostructure and interlayer coupling, defects, strain. We will also show that Raman imaging is an ideal tool to study the growth mechanism of CVD graphene.

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0205700), NSFC (61774034), and the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDB30000000.

References

  1. 1.
    A. Grüneis, C. Attaccalite, L. Wirtz, et al., Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B 78, 205425 (2008)Google Scholar
  2. 2.
    B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around theKpoint. Phys. Rev. B 74, 075404 (2006)Google Scholar
  3. 3.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)Google Scholar
  4. 4.
    Y. Zhang, T.T. Tang, C. Girit, et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)Google Scholar
  5. 5.
    L. Liu, S.B. Kumar, Y. Ouyang, et al., Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011)Google Scholar
  6. 6.
    R. Coehoorn, C. Haas, J. Dijkstra, et al., Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35, 6195–6202 (1987)Google Scholar
  7. 7.
    A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011)Google Scholar
  8. 8.
    J. Yang, R. Xu, J. Pei, et al., Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015)Google Scholar
  9. 9.
    I. Brihuega, P. Mallet, H. Gonzalez-Herrero, et al., Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012)Google Scholar
  10. 10.
    W.Y. He, Z.D. Chu, L. He, Chiral tunneling in a twisted graphene bilayer. Phys. Rev. Lett. 111, 066803 (2013)Google Scholar
  11. 11.
    H. Schmidt, T. Lüdtke, P. Barthold, et al., Tunable graphene system with two decoupled monolayers. Appl. Phys. Lett. 93, 172108 (2008)Google Scholar
  12. 12.
    D. Xiao, G.-B. Liu, W. Feng, et al., Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)Google Scholar
  13. 13.
    K.F. Mak, K. He, J. Shan, et al., Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)Google Scholar
  14. 14.
    Y. Chen, L. Meng, W. Zhao, et al., Raman mapping investigation of chemical vapor deposition-fabricated twisted bilayer graphene with irregular grains. Phys. Chem. Chem. Phys. 16, 21682–21687 (2014)Google Scholar
  15. 15.
    Z. Ni, H. Wang, J. Kasim, et al., Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)Google Scholar
  16. 16.
    Y. Wang, Z. Ni, Z. Shen, et al., Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 92, 043121 (2008)Google Scholar
  17. 17.
    Y. Hao, Y. Wang, L. Wang, et al., Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6, 195–200 (2010)Google Scholar
  18. 18.
    H. Li, Q. Zhang, C.C.R. Yap, et al., From Bulk to Monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)Google Scholar
  19. 19.
    Y. Liu, H. Nan, X. Wu, et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7, 4202–4209 (2013)Google Scholar
  20. 20.
    J.C. Shaw, H. Zhou, Y. Chen, et al., Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 7, 511–517 (2015)Google Scholar
  21. 21.
    A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, et al., Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013)Google Scholar
  22. 22.
    Y. Lee, D. Tran, K. Myhro, et al., Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014)Google Scholar
  23. 23.
    W. Zhang, J. Yan, C.H. Chen, et al., Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene. Nat. Commun. 4, 2074 (2013)Google Scholar
  24. 24.
    J. Yan, J. Xia, X. Wang, et al., Stacking-dependent interlayer coupling in trilayer MoS(2) with broken inversion symmetry. Nano Lett. 15, 8155–8161 (2015)Google Scholar
  25. 25.
    M.-Y. Choi, Y.-H. Hyun, Y. Kim, Angle dependence of the Landau level spectrum in twisted bilayer graphene. Phys. Rev. B 84, 195437 (2011)Google Scholar
  26. 26.
    A. Luican, G. Li, A. Reina, et al., Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011)Google Scholar
  27. 27.
    Y. Wang, Z. Ni, L. Liu, et al., Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 4, 4074–4080 (2010)Google Scholar
  28. 28.
    W. Yan, M. Liu, R.F. Dou, et al., Angle-dependent van Hove singularities in a slightly twisted graphene bilayer. Phys. Rev. Lett. 109, 126801 (2012)Google Scholar
  29. 29.
    J. Hass, F. Varchon, J.-E. Millan-Otoya, et al., Why multilayer graphene on 4 H− SiC (000 1¯) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008)Google Scholar
  30. 30.
    A. Reina, X. Jia, J. Ho, et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008)Google Scholar
  31. 31.
    Z. Ni, Y. Wang, T. Yu, et al., Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 77, 235403 (2008)Google Scholar
  32. 32.
    K. Kim, S. Coh, L.Z. Tan, et al., Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012)Google Scholar
  33. 33.
    A.C. Ferrari, J. Meyer, V. Scardaci, et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)Google Scholar
  34. 34.
    R.W. Havener, H. Zhuang, L. Brown, et al., Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012)Google Scholar
  35. 35.
    S. Coh, L.Z. Tan, S.G. Louie, et al., Theory of the Raman spectrum of rotated double-layer graphene. Phys. Rev. B 88, 165431 (2013)Google Scholar
  36. 36.
    C. Cong, T. Yu, K. Sato, et al., Raman characterization of ABA-and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)Google Scholar
  37. 37.
    C.H. Lui, Z. Li, Z. Chen, et al., Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011)Google Scholar
  38. 38.
    C. Cong, T. Yu, R. Saito, et al., Second-order overtone and combination Raman modes of graphene layers in the range of 1690−2150 cm−1. ACS Nano 5, 1600–1605 (2011)Google Scholar
  39. 39.
    J. Xia, J. Yan, Z.X. Shen, Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking. FlatChem 4, 1–19 (2017)Google Scholar
  40. 40.
    C. Dean, L. Wang, P. Maher, et al., Hofstadter’s butterfly in moire superlattices: A fractal quantum Hall effect. Nature 497, 598–602 (2013)Google Scholar
  41. 41.
    B. Hunt, J. Sanchez-Yamagishi, A. Young, et al., Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013)Google Scholar
  42. 42.
    M. Yankowitz, J. Xue, D. Cormode, et al., Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)Google Scholar
  43. 43.
    W.J. Yu, Y. Liu, H. Zhou, et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013)Google Scholar
  44. 44.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)Google Scholar
  45. 45.
    W. Zhang, C.P. Chuu, J.K. Huang, et al., Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4, 3826 (2014)Google Scholar
  46. 46.
    A. Das, S. Pisana, B. Chakraborty, et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008)Google Scholar
  47. 47.
    Y. Gong, J. Lin, X. Wang, et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)Google Scholar
  48. 48.
    A.M. Van Der Zande, P.Y. Huang, D.A. Chenet, et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013)Google Scholar
  49. 49.
    S. Najmaei, Z. Liu, W. Zhou, et al., Vapor phase growth and grain boundary structure of molybdenum disulfide atomic layers. Nat. Mater. 12, 754–759 (2013)Google Scholar
  50. 50.
    H. Terrones, E. Del Corro, S. Feng, et al., New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 4, 4215 (2014)Google Scholar
  51. 51.
    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2010)Google Scholar
  52. 52.
    J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, et al., From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011)Google Scholar
  53. 53.
    J. Ma, D. Alfe, A. Michaelides, et al., Stone-Wales defects in graphene and other planar s p 2-bonded materials. Phys. Rev. B 80, 033407 (2009)Google Scholar
  54. 54.
    A.J. Stone, D.J. Wales, Theoretical studies of icosahedral C 60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)Google Scholar
  55. 55.
    J. Choi, H. Zhang, J.H. Choi, Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 10, 1671–1680 (2016)Google Scholar
  56. 56.
    O. Cretu, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, et al., Migration and localization of metal atoms on strained graphene. Phys. Rev. Lett. 105, 196102 (2010)Google Scholar
  57. 57.
    S. Tongay, J. Zhou, C. Ataca, et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013)Google Scholar
  58. 58.
    Z.T. Wu, W.W. Zhao, W.Y. Chen, et al., The influence of chemical solvents on the properties of CVD graphene. J. Raman Spectrosc. 46, 21–24 (2015)Google Scholar
  59. 59.
    H. Qiu, T. Xu, Z. Wang, et al., Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013)Google Scholar
  60. 60.
    W. Zhou, X. Zou, S. Najmaei, et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013)Google Scholar
  61. 61.
    L. Ci, L. Song, C. Jin, et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)Google Scholar
  62. 62.
    H.P. Komsa, J. Kotakoski, S. Kurasch, et al., Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012)Google Scholar
  63. 63.
    J. Lu, A. Carvalho, X.K. Chan, et al., Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 15, 3524–3532 (2015)Google Scholar
  64. 64.
    N. Nemec, D. Tomanek, G. Cuniberti, Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Phys. Rev. Lett. 96, 076802 (2006)Google Scholar
  65. 65.
    W. Bao, N.J. Borys, C. Ko, et al., Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nat. Commun. 6, 7993 (2015)Google Scholar
  66. 66.
    P. Yasaei, B. Kumar, R. Hantehzadeh, et al., Chemical sensing with switchable transport channels in graphene grain boundaries. Nat. Commun. 5, 4911 (2014)Google Scholar
  67. 67.
    X. Zou, Y. Liu, B.I. Yakobson, Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2013)Google Scholar
  68. 68.
    D. Cao, T. Shen, P. Liang, et al., Role of chemical potential in flake shape and edge properties of monolayer MoS2. J. Phys. Chem. C 119, 4294–4301 (2015)Google Scholar
  69. 69.
    C. Cong, T. Yu, H. Wang, Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 4, 3175–3180 (2010)Google Scholar
  70. 70.
    B. Krauss, P. Nemes-Incze, V. Skakalova, et al., Raman scattering at pure graphene zigzag edges. Nano Lett. 10, 4544–4548 (2010)Google Scholar
  71. 71.
    Y. You, Z. Ni, T. Yu, et al., Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 93, 163112 (2008)Google Scholar
  72. 72.
    Z.H. Ni, H.M. Wang, Y. Ma, et al., Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2, 1033–1039 (2008)Google Scholar
  73. 73.
    Z. Zafar, Z.H. Ni, X. Wu, et al., Evolution of Raman spectra in nitrogen doped graphene. Carbon 61, 57–62 (2013)Google Scholar
  74. 74.
    Z. Luo, T. Yu, K.-J. Kim, et al., Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 3, 1781–1788 (2009)Google Scholar
  75. 75.
    L. Liu, S. Ryu, M.R. Tomasik, et al., Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008)Google Scholar
  76. 76.
    Q.H. Wang, Z. Jin, K.K. Kim, et al., Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 4, 724–732 (2012)Google Scholar
  77. 77.
    Y.N. Xu, D. Zhan, L. Liu, et al., Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy. ACS Nano 5, 147–152 (2010)Google Scholar
  78. 78.
    D. Zhan, L. Liu, Y.N. Xu, et al., Low temperature edge dynamics of AB-stacked bilayer graphene: naturally favored closed zigzag edges. Sci. Rep. 1, 12 (2011)Google Scholar
  79. 79.
    Q. Yu, L.A. Jauregui, W. Wu, et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011)Google Scholar
  80. 80.
    H. Nan, Z. Wang, W. Wang, et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014)Google Scholar
  81. 81.
    B. Chakraborty, A. Bera, D.V.S. Muthu, et al., Symmetry-dependent phonon renormalization in monolayer MoS2transistor. Phys. Rev. B 85, 161403 (2012)Google Scholar
  82. 82.
    N. Mao, Y. Chen, D. Liu, et al., Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 9, 1312–1315 (2013)Google Scholar
  83. 83.
    M. O’brien, N. Mcevoy, T. Hallam, et al., Transition metal dichalcogenide growth via close proximity precursor supply. Sci. Rep. 4, 7374 (2014)Google Scholar
  84. 84.
    G. Giovannetti, P.A. Khomyakov, G. Brocks, et al., Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initiodensity functional calculations. Phys. Rev. B 76, 073103 (2007)Google Scholar
  85. 85.
    R.M. Ribeiro, N.M.R. Peres, J. Coutinho, et al., Inducing energy gaps in monolayer and bilayer graphene: local density approximation calculations. Phys. Rev. B 78, 075442 (2008)Google Scholar
  86. 86.
    Z. Liu, M. Amani, S. Najmaei, et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014)Google Scholar
  87. 87.
    M. Huang, H. Yan, T.F. Heinz, et al., Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074–4079 (2010)Google Scholar
  88. 88.
    M. Mohr, J. Maultzsch, C. Thomsen, Splitting of the Raman2Dband of graphene subjected to strain. Phys. Rev. B 82, 201409 (2010)Google Scholar
  89. 89.
    Z.H. Ni, T. Yu, Y.H. Lu, et al., Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008)Google Scholar
  90. 90.
    A. Castellanos-Gomez, R. Roldan, E. Cappelluti, et al., Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013)Google Scholar
  91. 91.
    J.A. Robinson, C.P. Puls, N.E. Staley, et al., Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 9, 964–968 (2009)Google Scholar
  92. 92.
    Z.H. Ni, W. Chen, X.F. Fan, et al., Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 77, 200803 (2008)Google Scholar
  93. 93.
    J. Röhrl, M. Hundhausen, K.V. Emtsev, et al., Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008)Google Scholar
  94. 94.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)Google Scholar
  95. 95.
    L.G. De Arco, Y. Zhang, A. Kumar, et al., Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotechnol. 8, 135–138 (2009)Google Scholar
  96. 96.
    Y. Yu, Z. Li, W. Wang, et al., Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. J. Semicond. 38, 033003 (2017)Google Scholar
  97. 97.
    K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009)Google Scholar
  98. 98.
    X. Li, W. Cai, J. An, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)Google Scholar
  99. 99.
    Q. Yu, J. Lian, S. Siriponglert, et al., Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008)Google Scholar
  100. 100.
    C. Berger, Z. Song, T. Li, et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)Google Scholar
  101. 101.
    C. Berger, Z. Song, X. Li, et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)Google Scholar
  102. 102.
    T. Ohta, A. Bostwick, T. Seyller, et al., Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)Google Scholar
  103. 103.
    S. Stankovich, D.A. Dikin, R.D. Piner, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)Google Scholar
  104. 104.
    S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)Google Scholar
  105. 105.
    H. Wang, J.T. Robinson, X. Li, et al., Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131, 9910–9911 (2009)Google Scholar
  106. 106.
    Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)Google Scholar
  107. 107.
    X. Li, W. Cai, L. Colombo, et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009)Google Scholar
  108. 108.
    J. Shelton, H. Patil, J. Blakely, Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf. Sci. 43, 493–520 (1974)Google Scholar
  109. 109.
    L. Isett, J. Blakely, Segregation isosteres for carbon at the (100) surface of nickel. Surf. Sci. 58, 397–414 (1976)Google Scholar
  110. 110.
    M. Eizenberg, J. Blakely, Carbon monolayer phase condensation on Ni (111). Surf. Sci. 82, 228–236 (1979)Google Scholar
  111. 111.
    M. Eizenberg, J. Blakely, Carbon interaction with nickel surfaces: monolayer formation and structural stability. J. Chem. Phys. 71, 3467–3477 (1979)Google Scholar
  112. 112.
    X. Li, C.W. Magnuson, A. Venugopal, et al., Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010)Google Scholar
  113. 113.
    H. Bi, S. Sun, F. Huang, et al., Direct growth of few-layer graphene films on SiO2substrates and their photovoltaic applications. J. Mater. Chem. 22, 411–416 (2012)Google Scholar
  114. 114.
    J. Chen, Y. Wen, Y. Guo, et al., Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133, 17548–17551 (2011)Google Scholar
  115. 115.
    M.T. Cole, N. Lindvall, A. Yurgens, Noncatalytic chemical vapor deposition of graphene on high-temperature substrates for transparent electrodes. Appl. Phys. Lett. 100, 022102 (2012)Google Scholar
  116. 116.
    G. Hong, Q.-H. Wu, J. Ren, et al., Mechanism of non-metal catalytic growth of graphene on silicon. Appl. Phys. Lett. 100, 231604 (2012)Google Scholar
  117. 117.
    K.-B. Kim, C.-M. Lee, J. Choi, Catalyst-free direct growth of triangular nano-graphene on all substrates. J. Phys. Chem. C 115, 14488–14493 (2011)Google Scholar
  118. 118.
    N. Lindvall, M.T. Cole, T.J. Booth, et al., Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide. J. Appl. Phys. 111, 044103 (2012)Google Scholar
  119. 119.
    X. Li, C.W. Magnuson, A. Venugopal, et al., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011)Google Scholar
  120. 120.
    Y. Hao, L. Wang, Y. Liu, et al., Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of PhysicsSoutheast UniversityNanjingChina
  2. 2.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations