Advertisement

Raman Spectroscopy of Monolayer and Multilayer Graphenes

  • Jiang-Bin Wu
  • Miao-Ling Lin
  • Ping-Heng Tan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

The discovery of monolayer graphene in 2004 has triggered a great effort to investigate the fundamental properties and applications of all two-dimensional materials (2DMs). Monolayer graphene (1LG) can be stacked layer by layer in a particular way (AB, ABC and twist) to form multilayer graphene (MLG), whose properties vary according to the stacking. Raman spectroscopy is a useful tool to reveal the chemical and physical properties of graphene materials. In this chapter, we review the systematic development of the Raman spectroscopy of pristine 1LG and MLG. The essential Raman scattering processes of the entire first and second order modes in intrinsic 1LG are addressed in detail. We further introduce the concept of double resonance Raman scattering in graphene. Moreover, a series of works on the shear (C), layer-breathing (LB) and 2D modes of MLGs with different stacking orders are discussed. Finally, various types of resonance Raman spectroscopy of 1LG and MLG are also presented. The Raman spectroscopy of graphene materials can serve as a typical example in studying the Raman spectroscopy of other 2DMs and introducing the fundamental physical concepts for 2DMs.

Notes

Acknowledgements

We acknowledge support from the National Key Research and Development Program of China (Grant No. 2016YFA0301204), the National Natural Science Foundation of China (Grant No. 11474277, 11874350 and 11434010), and the Beijing Municipal Science and Technology Commission.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)Google Scholar
  2. 2.
    S. Latil, L. Henrard, Phys. Rev. Lett. 97(3), 036803 (2006)Google Scholar
  3. 3.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, P. Natl. Acad. Sci. USA 102, 10451 (2005)Google Scholar
  4. 4.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, et al., Science 324(5932), 1312 (2009)Google Scholar
  5. 5.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9(1), 30 (2008)Google Scholar
  6. 6.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007)Google Scholar
  7. 7.
    A.K. Geim, I.V. Grigorieva, Nature 499(7459), 419 (2013)Google Scholar
  8. 8.
    K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, Science 353, 6298 (2016)Google Scholar
  9. 9.
    J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Chem. Soc. Rev. 47, 1822 (2018)Google Scholar
  10. 10.
    H. Li, J.B. Wu, F. Ran, M.L. Lin, X.L. Liu, Y. Zhao, X. Lu, Q. Xiong, J. Zhang, W. Huang, H. Zhang, P.H. Tan, ACS Nano 11, 11714 (2017)Google Scholar
  11. 11.
    L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Phys. Rep. 473(5), 51 (2009)Google Scholar
  12. 12.
    A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8(4), 235 (2013)Google Scholar
  13. 13.
    A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, et al., Phys. Rev. Lett. 97(18), 187401 (2006)Google Scholar
  14. 14.
    L. Malard, J. Nilsson, D. Elias, J. Brant, F. Plentz, E. Alves, A.C. Neto, M. Pimenta, Phys. Rev. B 76(20), 201401 (2007)Google Scholar
  15. 15.
    C.F. Chen, C.H. Park, B.W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M.F. Crommie, R.A. Segalman, S.G. Louie, et al., Nature 471(7340), 617 (2011)Google Scholar
  16. 16.
    D. Basko, New J. Phys. 11(9), 095011 (2009)Google Scholar
  17. 17.
    D. Yoon, H. Moon, Y.W. Son, J.S. Choi, B.H. Park, Y.H. Cha, Y.D. Kim, H. Cheong, Phys. Rev. B 80(12), 125422 (2009)Google Scholar
  18. 18.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009)Google Scholar
  19. 19.
    J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M.G. Spencer, D. Veksler, Y. Chen, Appl. Phys. Lett. 93(13), 131905 (2008)Google Scholar
  20. 20.
    P. Blake, E. Hill, A.C. Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, A. Geim, Appl. Phys. Lett. 91(6), 063124 (2007)Google Scholar
  21. 21.
    X.L. Li, X.F. Qiao, W.P. Han, Y. Lu, Q.H. Tan, X.L. Liu, P.H. Tan, Nanoscale 7(17), 8135 (2015)Google Scholar
  22. 22.
    W. Zhao, P. Tan, J. Zhang, J. Liu, Phys. Rev. B 82(24), 245423 (2010)Google Scholar
  23. 23.
    M. Lazzeri, C. Attaccalite, L. Wirtz, F. Mauri, Phys. Rev. B 78(8), 081406 (2008)Google Scholar
  24. 24.
    P. Tan, C. Hu, J. Dong, W. Shen, B. Zhang, Phys. Rev. B 64(21), 214301 (2001)Google Scholar
  25. 25.
    S. Reich, C. Thomsen, Philos. Transact. A Math Phys. Eng. Sci. 362(1824), 2271 (2004)Google Scholar
  26. 26.
    P. Tan, W. Han, W. Zhao, Z. Wu, K. Chang, H. Wang, Y. Wang, N. Bonini, N. Marzari, N. Pugno, et al., Nat. Mater. 11(4), 294 (2012)Google Scholar
  27. 27.
    J.B. Wu, Z.X. Hu, X. Zhang, W.P. Han, Y. Lu, W. Shi, X.F. Qiao, M. Ijias, S. Milana, W. Ji, et al., ACS Nano 9(7), 7440 (2015)Google Scholar
  28. 28.
    P.H. Tan, J.B. Wu, W.P. Han, W.J. Zhao, X. Zhang, H. Wang, Y.F. Wang, Phys. Rev. B 89(23), 235404 (2014)Google Scholar
  29. 29.
    D. L. Nika, A. A. Balandin, J. Phys. Condes. Matter 24, 233203 (2012)Google Scholar
  30. 30.
    M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, C. Thomsen, Phys. Rev. B 76(3), 035439 (2007)Google Scholar
  31. 31.
    S. Siebentritt, R. Pues, K.H. Rieder, A.M. Shikin, Phys. Rev. B 55(12), 7927 (1997)Google Scholar
  32. 32.
    R. Saito, A. Jorio, A. Souza Filho, G. Dresselhaus, M. Dresselhaus, M. Pimenta, Phys. Rev. Lett. 88(2), 027401 (2001)Google Scholar
  33. 33.
    P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84(3), 035433 (2011)Google Scholar
  34. 34.
    P. Tan, L. An, L. Liu, Z. Guo, R. Czerw, D.L. Carroll, P.M. Ajayan, N. Zhang, H. Guo, Phys. Rev. B 66(24), 245410 (2002)Google Scholar
  35. 35.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85(24), 5214 (2000)Google Scholar
  36. 36.
    P. Tan, Y. Deng, Q. Zhao, Phys. Rev. B 58(9), 5435 (1998)Google Scholar
  37. 37.
    P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J.S. Reparaz, A. Hoffmann, F. Mauri, J. Maultzsch, Phys. Rev. B 87(7), 075402 (2013)Google Scholar
  38. 38.
    D. Basko, S. Piscanec, A. Ferrari, Phys. Rev. B 80(16), 165413 (2009)Google Scholar
  39. 39.
    D. Yoon, H. Moon, Y.W. Son, G. Samsonidze, B.H. Park, J.B. Kim, Y. Lee, H. Cheong, Nano Lett. 8(12), 4270 (2008)Google Scholar
  40. 40.
    S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, J. Robertson, Phys. Rev. Lett. 93(18), 185503 (2004)Google Scholar
  41. 41.
    L. Malard, M. Guimaraes, D. Mafra, A. Jorio, Phys. Rev. B 79(12), 125426 (2009)Google Scholar
  42. 42.
    J.B. Wu, X. Zhang, M. Ijäs, W.P. Han, X.F. Qiao, X.L. Li, D.S. Jiang, A.C. Ferrari, P.H. Tan, Nat. Commun. 5, 5309 (2014)Google Scholar
  43. 43.
    C. Cong, T. Yu, Nat. Commun. 5, 4709 (2014)Google Scholar
  44. 44.
    L. Malard, D. Elias, E. Alves, M. Pimenta, Phys. Rev. Lett. 101(25), 257401 (2008)Google Scholar
  45. 45.
    W. Zhao, P.H. Tan, J. Liu, A.C. Ferrari, J. Am. Chem. Soc. 133(15), 5941 (2011)Google Scholar
  46. 46.
    J. Zabel, R.R. Nair, A. Ott, T. Georgiou, A.K. Geim, K.S. Novoselov, C. Casiraghi, Nano Lett. 12(2), 617 (2012)Google Scholar
  47. 47.
    X. Zhang, W.P. Han, X.F. Qiao, Q.H. Tan, Y.F. Wang, J. Zhang, P.H. Tan, Carbon 99, 118 (2016)Google Scholar
  48. 48.
    J.B. Wu, H. Wang, X.L. Li, H. Peng, P.H. Tan, Carbon 110, 225 (2016)Google Scholar
  49. 49.
    M.L. Lin, T. Chen, W. Lu, Q.H. Tan, P. Zhao, H.T. Wang, Y. Xu, P.H. Tan, J. Raman Spectrosc. 49, 46 (2018)Google Scholar
  50. 50.
    H. Wang, M. Feng, X. Zhang, P.H. Tan, Y. Wang, J. Phys. Chem. C 119(12), 6906 (2015)Google Scholar
  51. 51.
    X. Zhang, X.F. Qiao, W. Shi, J.B. Wu, D.S. Jiang, P.H. Tan, Chem. Soc. Rev. 44(9), 2757 (2015)Google Scholar
  52. 52.
    X.L. Li, W.P. Han, J.B. Wu, X.F. Qiao, J. Zhang, P.H. Tan, Adv. Funct. Mater. 27(19), 1604468 (2017)Google Scholar
  53. 53.
    L. Liang, J. Zhang, B.G. Sumpter, Q. Tan, P.H. Tan, V. Meunier, ACS Nano 11(12), 11777 (2017)Google Scholar
  54. 54.
    X.F. Qiao, X.L. Li, X. Zhang, W. Shi, J.B. Wu, T. Chen, P.H. Tan, Appl. Phys. Lett. 106(22), 223102 (2015)Google Scholar
  55. 55.
    C.H. Lui, Z. Ye, C. Keiser, E.B. Barros, R. He, Appl. Phys. Lett. 106(4), 041904 (2015)Google Scholar
  56. 56.
    H. Wilhelm, B. Croset, G. Medjahdi, Carbon 45(12), 2356 (2007)Google Scholar
  57. 57.
    C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, ACS Nano 5(11), 8760 (2011)Google Scholar
  58. 58.
    C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Nano Lett. 11(1), 164 (2010)Google Scholar
  59. 59.
    T. Nguyen, J. Lee, D. Yoon, H. Cheong, Sci. Rep. 4, 4630 (2014)Google Scholar
  60. 60.
    R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Nano Lett. 12(6), 3162 (2012)Google Scholar
  61. 61.
    K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Phys. Rev. Lett. 108(24), 246103 (2012)Google Scholar
  62. 62.
    J. Campos-Delgado, L.G. Cançado, C.A. Achete, A. Jorio, J.P. Raskin, Nano Res. 6(4), 269 (2013)Google Scholar
  63. 63.
    A. Jorio, L.G. Cançado, Solid State Commun. 175, 3 (2013)Google Scholar
  64. 64.
    Z. Ni, Y. Wang, T. Yu, Y. You, Z. Shen, Phys. Rev. B 77(23), 235403 (2008)Google Scholar
  65. 65.
    P. Moon, M. Koshino, Phys. Rev. B 87(20), 205404 (2013)Google Scholar
  66. 66.
    G. Trambly de Laissardière, D. Mayou, L. Magaud, Nano Lett. 10(3), 804 (2010)Google Scholar
  67. 67.
    K. Sato, R. Saito, C. Cong, T. Yu, M.S. Dresselhaus, Phys. Rev. B 86(12), 125414 (2012)Google Scholar
  68. 68.
    V. Carozo, C. Almeida, B. Fragneaud, P. Bedê, M. Moutinho, J. Ribeiro-Soares, N. Andrade, A. Souza Filho, M. Matos, B. Wang, et al., Phys. Rev. B 88(8), 085401 (2013)Google Scholar
  69. 69.
    V. Carozo, C.M. Almeida, E.H. Ferreira, L.G. Cançado, C.A. Achete, A. Jorio, Nano Lett. 11(11), 4527 (2011)Google Scholar
  70. 70.
    X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, P. Tan, Phys. Rev. B 87(11), 115413 (2013)Google Scholar
  71. 71.
    J. Maultzsch, S. Reich, C. Thomsen, Phys. Rev. B 70(15), 155403 (2004)Google Scholar
  72. 72.
    F. Cerdeira, T. Fjeldly, M. Cardona, Phys. Rev. B 8(10), 4734 (1973)Google Scholar
  73. 73.
    H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, M.Z. Hasan, Nat. Mater. 9(7), 546 (2010)Google Scholar
  74. 74.
    R. Gupta, Q. Xiong, C. Adu, U. Kim, P. Eklund, Nano Lett. 3(5), 627 (2003)Google Scholar
  75. 75.
    J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q. Xiong, Nano Lett. 11(6), 2407 (2011)Google Scholar
  76. 76.
    Q.H. Tan, Y.J. Sun, X.L. Liu, Y. Zhao, Q. Xiong, P.H. Tan, J. Zhang, 2D Mater. 4(3), 031007 (2017)Google Scholar
  77. 77.
    D. Yoon, D. Jeong, H.J. Lee, R. Saito, Y.W. Son, H.C. Lee, H. Cheong, Carbon 61, 373 (2013)Google Scholar
  78. 78.
    E.H. Hasdeo, A.R. Nugraha, M.S. Dresselhaus, R. Saito, Phys. Rev. B 90(24), 245140 (2014)Google Scholar
  79. 79.
    T.T. Tang, Y. Zhang, C.H. Park, B. Geng, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, S.G. Louie, et al., Nat. Nanotechnol. 5(1), 32 (2010)Google Scholar
  80. 80.
    R. He, T.F. Chung, C. Delaney, C. Keiser, L.A. Jauregui, P.M. Shand, C. Chancey, Y. Wang, J. Bao, Y.P. Chen, Nano Lett. 13(8), 3594 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jiang-Bin Wu
    • 1
    • 2
  • Miao-Ling Lin
    • 1
    • 2
  • Ping-Heng Tan
    • 1
    • 3
  1. 1.State Key Laboratory of Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of ScienceBeijingChina
  3. 3.Center of Materials Science and Opto-Electronics Engineering & CAS Center of Excellence in Topological Quantum ComputationUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations