Raman Spectroscopy of Monolayer and Multilayer Graphenes

  • Jiang-Bin Wu
  • Miao-Ling Lin
  • Ping-Heng Tan
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)


The discovery of monolayer graphene in 2004 has triggered a great effort to investigate the fundamental properties and applications of all two-dimensional materials (2DMs). Monolayer graphene (1LG) can be stacked layer by layer in a particular way (AB, ABC and twist) to form multilayer graphene (MLG), whose properties vary according to the stacking. Raman spectroscopy is a useful tool to reveal the chemical and physical properties of graphene materials. In this chapter, we review the systematic development of the Raman spectroscopy of pristine 1LG and MLG. The essential Raman scattering processes of the entire first and second order modes in intrinsic 1LG are addressed in detail. We further introduce the concept of double resonance Raman scattering in graphene. Moreover, a series of works on the shear (C), layer-breathing (LB) and 2D modes of MLGs with different stacking orders are discussed. Finally, various types of resonance Raman spectroscopy of 1LG and MLG are also presented. The Raman spectroscopy of graphene materials can serve as a typical example in studying the Raman spectroscopy of other 2DMs and introducing the fundamental physical concepts for 2DMs.



We acknowledge support from the National Key Research and Development Program of China (Grant No. 2016YFA0301204), the National Natural Science Foundation of China (Grant No. 11474277, 11874350 and 11434010), and the Beijing Municipal Science and Technology Commission.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Latil, L. Henrard, Phys. Rev. Lett. 97(3), 036803 (2006)CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, P. Natl. Acad. Sci. USA 102, 10451 (2005)CrossRefGoogle Scholar
  4. 4.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, et al., Science 324(5932), 1312 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9(1), 30 (2008)CrossRefGoogle Scholar
  6. 6.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007)CrossRefGoogle Scholar
  7. 7.
    A.K. Geim, I.V. Grigorieva, Nature 499(7459), 419 (2013)CrossRefGoogle Scholar
  8. 8.
    K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, Science 353, 6298 (2016)CrossRefGoogle Scholar
  9. 9.
    J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Chem. Soc. Rev. 47, 1822 (2018)CrossRefGoogle Scholar
  10. 10.
    H. Li, J.B. Wu, F. Ran, M.L. Lin, X.L. Liu, Y. Zhao, X. Lu, Q. Xiong, J. Zhang, W. Huang, H. Zhang, P.H. Tan, ACS Nano 11, 11714 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Phys. Rep. 473(5), 51 (2009)CrossRefGoogle Scholar
  12. 12.
    A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8(4), 235 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, et al., Phys. Rev. Lett. 97(18), 187401 (2006)CrossRefGoogle Scholar
  14. 14.
    L. Malard, J. Nilsson, D. Elias, J. Brant, F. Plentz, E. Alves, A.C. Neto, M. Pimenta, Phys. Rev. B 76(20), 201401 (2007)CrossRefGoogle Scholar
  15. 15.
    C.F. Chen, C.H. Park, B.W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M.F. Crommie, R.A. Segalman, S.G. Louie, et al., Nature 471(7340), 617 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Basko, New J. Phys. 11(9), 095011 (2009)CrossRefGoogle Scholar
  17. 17.
    D. Yoon, H. Moon, Y.W. Son, J.S. Choi, B.H. Park, Y.H. Cha, Y.D. Kim, H. Cheong, Phys. Rev. B 80(12), 125422 (2009)CrossRefGoogle Scholar
  18. 18.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009)CrossRefGoogle Scholar
  19. 19.
    J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M.G. Spencer, D. Veksler, Y. Chen, Appl. Phys. Lett. 93(13), 131905 (2008)CrossRefGoogle Scholar
  20. 20.
    P. Blake, E. Hill, A.C. Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, A. Geim, Appl. Phys. Lett. 91(6), 063124 (2007)CrossRefGoogle Scholar
  21. 21.
    X.L. Li, X.F. Qiao, W.P. Han, Y. Lu, Q.H. Tan, X.L. Liu, P.H. Tan, Nanoscale 7(17), 8135 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Zhao, P. Tan, J. Zhang, J. Liu, Phys. Rev. B 82(24), 245423 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Lazzeri, C. Attaccalite, L. Wirtz, F. Mauri, Phys. Rev. B 78(8), 081406 (2008)CrossRefGoogle Scholar
  24. 24.
    P. Tan, C. Hu, J. Dong, W. Shen, B. Zhang, Phys. Rev. B 64(21), 214301 (2001)CrossRefGoogle Scholar
  25. 25.
    S. Reich, C. Thomsen, Philos. Transact. A Math Phys. Eng. Sci. 362(1824), 2271 (2004)CrossRefGoogle Scholar
  26. 26.
    P. Tan, W. Han, W. Zhao, Z. Wu, K. Chang, H. Wang, Y. Wang, N. Bonini, N. Marzari, N. Pugno, et al., Nat. Mater. 11(4), 294 (2012)CrossRefGoogle Scholar
  27. 27.
    J.B. Wu, Z.X. Hu, X. Zhang, W.P. Han, Y. Lu, W. Shi, X.F. Qiao, M. Ijias, S. Milana, W. Ji, et al., ACS Nano 9(7), 7440 (2015)CrossRefGoogle Scholar
  28. 28.
    P.H. Tan, J.B. Wu, W.P. Han, W.J. Zhao, X. Zhang, H. Wang, Y.F. Wang, Phys. Rev. B 89(23), 235404 (2014)CrossRefGoogle Scholar
  29. 29.
    D. L. Nika, A. A. Balandin, J. Phys. Condes. Matter 24, 233203 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, C. Thomsen, Phys. Rev. B 76(3), 035439 (2007)CrossRefGoogle Scholar
  31. 31.
    S. Siebentritt, R. Pues, K.H. Rieder, A.M. Shikin, Phys. Rev. B 55(12), 7927 (1997)CrossRefGoogle Scholar
  32. 32.
    R. Saito, A. Jorio, A. Souza Filho, G. Dresselhaus, M. Dresselhaus, M. Pimenta, Phys. Rev. Lett. 88(2), 027401 (2001)CrossRefGoogle Scholar
  33. 33.
    P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84(3), 035433 (2011)CrossRefGoogle Scholar
  34. 34.
    P. Tan, L. An, L. Liu, Z. Guo, R. Czerw, D.L. Carroll, P.M. Ajayan, N. Zhang, H. Guo, Phys. Rev. B 66(24), 245410 (2002)CrossRefGoogle Scholar
  35. 35.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85(24), 5214 (2000)CrossRefGoogle Scholar
  36. 36.
    P. Tan, Y. Deng, Q. Zhao, Phys. Rev. B 58(9), 5435 (1998)CrossRefGoogle Scholar
  37. 37.
    P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J.S. Reparaz, A. Hoffmann, F. Mauri, J. Maultzsch, Phys. Rev. B 87(7), 075402 (2013)CrossRefGoogle Scholar
  38. 38.
    D. Basko, S. Piscanec, A. Ferrari, Phys. Rev. B 80(16), 165413 (2009)CrossRefGoogle Scholar
  39. 39.
    D. Yoon, H. Moon, Y.W. Son, G. Samsonidze, B.H. Park, J.B. Kim, Y. Lee, H. Cheong, Nano Lett. 8(12), 4270 (2008)CrossRefGoogle Scholar
  40. 40.
    S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, J. Robertson, Phys. Rev. Lett. 93(18), 185503 (2004)CrossRefGoogle Scholar
  41. 41.
    L. Malard, M. Guimaraes, D. Mafra, A. Jorio, Phys. Rev. B 79(12), 125426 (2009)CrossRefGoogle Scholar
  42. 42.
    J.B. Wu, X. Zhang, M. Ijäs, W.P. Han, X.F. Qiao, X.L. Li, D.S. Jiang, A.C. Ferrari, P.H. Tan, Nat. Commun. 5, 5309 (2014)CrossRefGoogle Scholar
  43. 43.
    C. Cong, T. Yu, Nat. Commun. 5, 4709 (2014)CrossRefGoogle Scholar
  44. 44.
    L. Malard, D. Elias, E. Alves, M. Pimenta, Phys. Rev. Lett. 101(25), 257401 (2008)CrossRefGoogle Scholar
  45. 45.
    W. Zhao, P.H. Tan, J. Liu, A.C. Ferrari, J. Am. Chem. Soc. 133(15), 5941 (2011)CrossRefGoogle Scholar
  46. 46.
    J. Zabel, R.R. Nair, A. Ott, T. Georgiou, A.K. Geim, K.S. Novoselov, C. Casiraghi, Nano Lett. 12(2), 617 (2012)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, W.P. Han, X.F. Qiao, Q.H. Tan, Y.F. Wang, J. Zhang, P.H. Tan, Carbon 99, 118 (2016)CrossRefGoogle Scholar
  48. 48.
    J.B. Wu, H. Wang, X.L. Li, H. Peng, P.H. Tan, Carbon 110, 225 (2016)CrossRefGoogle Scholar
  49. 49.
    M.L. Lin, T. Chen, W. Lu, Q.H. Tan, P. Zhao, H.T. Wang, Y. Xu, P.H. Tan, J. Raman Spectrosc. 49, 46 (2018)CrossRefGoogle Scholar
  50. 50.
    H. Wang, M. Feng, X. Zhang, P.H. Tan, Y. Wang, J. Phys. Chem. C 119(12), 6906 (2015)CrossRefGoogle Scholar
  51. 51.
    X. Zhang, X.F. Qiao, W. Shi, J.B. Wu, D.S. Jiang, P.H. Tan, Chem. Soc. Rev. 44(9), 2757 (2015)CrossRefGoogle Scholar
  52. 52.
    X.L. Li, W.P. Han, J.B. Wu, X.F. Qiao, J. Zhang, P.H. Tan, Adv. Funct. Mater. 27(19), 1604468 (2017)CrossRefGoogle Scholar
  53. 53.
    L. Liang, J. Zhang, B.G. Sumpter, Q. Tan, P.H. Tan, V. Meunier, ACS Nano 11(12), 11777 (2017)CrossRefGoogle Scholar
  54. 54.
    X.F. Qiao, X.L. Li, X. Zhang, W. Shi, J.B. Wu, T. Chen, P.H. Tan, Appl. Phys. Lett. 106(22), 223102 (2015)CrossRefGoogle Scholar
  55. 55.
    C.H. Lui, Z. Ye, C. Keiser, E.B. Barros, R. He, Appl. Phys. Lett. 106(4), 041904 (2015)CrossRefGoogle Scholar
  56. 56.
    H. Wilhelm, B. Croset, G. Medjahdi, Carbon 45(12), 2356 (2007)CrossRefGoogle Scholar
  57. 57.
    C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, ACS Nano 5(11), 8760 (2011)CrossRefGoogle Scholar
  58. 58.
    C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Nano Lett. 11(1), 164 (2010)CrossRefGoogle Scholar
  59. 59.
    T. Nguyen, J. Lee, D. Yoon, H. Cheong, Sci. Rep. 4, 4630 (2014)CrossRefGoogle Scholar
  60. 60.
    R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Nano Lett. 12(6), 3162 (2012)CrossRefGoogle Scholar
  61. 61.
    K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Phys. Rev. Lett. 108(24), 246103 (2012)CrossRefGoogle Scholar
  62. 62.
    J. Campos-Delgado, L.G. Cançado, C.A. Achete, A. Jorio, J.P. Raskin, Nano Res. 6(4), 269 (2013)CrossRefGoogle Scholar
  63. 63.
    A. Jorio, L.G. Cançado, Solid State Commun. 175, 3 (2013)CrossRefGoogle Scholar
  64. 64.
    Z. Ni, Y. Wang, T. Yu, Y. You, Z. Shen, Phys. Rev. B 77(23), 235403 (2008)CrossRefGoogle Scholar
  65. 65.
    P. Moon, M. Koshino, Phys. Rev. B 87(20), 205404 (2013)CrossRefGoogle Scholar
  66. 66.
    G. Trambly de Laissardière, D. Mayou, L. Magaud, Nano Lett. 10(3), 804 (2010)CrossRefGoogle Scholar
  67. 67.
    K. Sato, R. Saito, C. Cong, T. Yu, M.S. Dresselhaus, Phys. Rev. B 86(12), 125414 (2012)CrossRefGoogle Scholar
  68. 68.
    V. Carozo, C. Almeida, B. Fragneaud, P. Bedê, M. Moutinho, J. Ribeiro-Soares, N. Andrade, A. Souza Filho, M. Matos, B. Wang, et al., Phys. Rev. B 88(8), 085401 (2013)CrossRefGoogle Scholar
  69. 69.
    V. Carozo, C.M. Almeida, E.H. Ferreira, L.G. Cançado, C.A. Achete, A. Jorio, Nano Lett. 11(11), 4527 (2011)CrossRefGoogle Scholar
  70. 70.
    X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, P. Tan, Phys. Rev. B 87(11), 115413 (2013)CrossRefGoogle Scholar
  71. 71.
    J. Maultzsch, S. Reich, C. Thomsen, Phys. Rev. B 70(15), 155403 (2004)CrossRefGoogle Scholar
  72. 72.
    F. Cerdeira, T. Fjeldly, M. Cardona, Phys. Rev. B 8(10), 4734 (1973)CrossRefGoogle Scholar
  73. 73.
    H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, M.Z. Hasan, Nat. Mater. 9(7), 546 (2010)CrossRefGoogle Scholar
  74. 74.
    R. Gupta, Q. Xiong, C. Adu, U. Kim, P. Eklund, Nano Lett. 3(5), 627 (2003)CrossRefGoogle Scholar
  75. 75.
    J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q. Xiong, Nano Lett. 11(6), 2407 (2011)CrossRefGoogle Scholar
  76. 76.
    Q.H. Tan, Y.J. Sun, X.L. Liu, Y. Zhao, Q. Xiong, P.H. Tan, J. Zhang, 2D Mater. 4(3), 031007 (2017)CrossRefGoogle Scholar
  77. 77.
    D. Yoon, D. Jeong, H.J. Lee, R. Saito, Y.W. Son, H.C. Lee, H. Cheong, Carbon 61, 373 (2013)CrossRefGoogle Scholar
  78. 78.
    E.H. Hasdeo, A.R. Nugraha, M.S. Dresselhaus, R. Saito, Phys. Rev. B 90(24), 245140 (2014)CrossRefGoogle Scholar
  79. 79.
    T.T. Tang, Y. Zhang, C.H. Park, B. Geng, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, S.G. Louie, et al., Nat. Nanotechnol. 5(1), 32 (2010)CrossRefGoogle Scholar
  80. 80.
    R. He, T.F. Chung, C. Delaney, C. Keiser, L.A. Jauregui, P.M. Shand, C. Chancey, Y. Wang, J. Bao, Y.P. Chen, Nano Lett. 13(8), 3594 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jiang-Bin Wu
    • 1
    • 2
  • Miao-Ling Lin
    • 1
    • 2
  • Ping-Heng Tan
    • 3
  1. 1.State Key Laboratory of Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of ScienceBeijingChina
  3. 3.Institute of Semiconductors, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations