Advertisement

Reconstruction of Retinal OCT Images with Sparse Representation

  • Leyuan Fang
  • Shutao LiEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

In addition to the speckle noise introduced in the acquisition process, clinical-used OCT images often have high resolution and thus create a heavy burden for storage and transmission. To alleviate these problems, this chapter introduces several sparse representation based reconstruction methods for denoising, interpolation and compression, which enhance the quality of the OCT images and efficiently manage such large of amounts of data.

References

  1. 1.
    W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kärtner, J.S. Schuman, J.G. Fujimoto, Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7, 502–507 (2001)CrossRefGoogle Scholar
  2. 2.
    L. Fang, S. Li, Q. Nie, J.A. Izatt, C.A. Toth, S. Farsiu, Sparsity based denoising of spectral domain optical coherence tomography images. Biomed. Opt. Express 3, 927–942 (2012)CrossRefGoogle Scholar
  3. 3.
    H.M. Salinas, D.C. Fernández, Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Trans. Med. Imag. 26, 761–771 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Wong, A. Mishra, K. Bizheva, D.A. Clausi, General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt. Exp. 18, 8338–8352 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    L. Fang, S. Li, R. McNabb, Q. Nie, A. Kuo, C. Toth et al., Fast acquisition and reconstruction of optical coherence tomography images via sparse representation. IEEE Trans. Med. Imag. 32, 2034–2049 (2013)Google Scholar
  6. 6.
    P. Milanfar, A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Signal Process. Mag. 30, 106–128 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A. Ozcan, A. Bilenca, A.E. Desjardins, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography images using digital filtering. J. Opt. Soc. Am. 24, 1901–1910 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Boroomand, A. Wong, E. Li, D.S. Cho, B. Ni, K. Bizheva, Multi-penalty conditional random field approach to super-resolved reconstruction of optical coherence tomography images. Biomed. Opt. Exp. 4, 2032–2050 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Liu, J.U. Kang, Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography. Opt. Exp. 18, 22010–22019 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D. Xu, N. Vaswani, Y. Huang, J.U. Kang, Modified compressive sensing optical coherence tomography with noise reduction. Opt. Lett. 37, 4209–4211 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    D. Xu, Y. Huang, J.U. Kang, Real-time compressive sensing spectral domain optical coherence tomography. Opt. Lett. 39, 76–79 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    E. Lebed, P.J. Mackenzie, M.V. Sarunic, F.M. Beg, Rapid volumetric OCT image acquisition using compressive sampling. Opt. Exp. 18, 21003–21012 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A.B. Wu, E. Lebed, M.V. Sarunic, M.F. Beg, Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images. IEEE Trans. Biomed. Eng. 60, 470–478 (2013)CrossRefGoogle Scholar
  14. 14.
    K.L. Lurie, R. Angst, A.K. Ellerbee, Automated mosaicing of feature-poor optical coherence tomography volumes with an integrated white light imaging system. IEEE Trans. Biomed. Eng. 61, 2141–2153 (2014)CrossRefGoogle Scholar
  15. 15.
    G.T. Chong, S. Farsiu, S.F. Freedman, N. Sarin, A.F. Koreishi, J.A. Izatt et al., Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch. Ophthalmol. 127, 37–44 (2009)CrossRefGoogle Scholar
  16. 16.
    G.K. Wallace, The JPEG still picture compression standard. ACM Commun. 34, 30–44 (1991)CrossRefGoogle Scholar
  17. 17.
    H. Rabbani, R. Nezafat, S. Gazor, Wavelet-domain medical image denoising using bivariate laplacian mixture model. IEEE Trans. Biomed. Eng. 56, 2826 (2009)CrossRefGoogle Scholar
  18. 18.
    Z. Jian, L. Yu, B. Rao, B.J. Tromberg, Z. Chen, Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform. Opt. Exp. 18, 1024–1032 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation modeling. Proc. IEEE 98, 1045–1057 (2010)CrossRefGoogle Scholar
  20. 20.
    B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    S. Li, L. Fang, H. Yin, An efficient dictionary learning algorithm and its application to 3-D medical image denoising. IEEE Trans. Biomed. Eng. 59, 417–427 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Wong, A. Mishra, P. Fieguth, D.A. Clausi, Sparse reconstruction of breast mri using homotopic minimization in a regional sparsified domain. IEEE Trans. Biomed. Eng. 60, 743–752 (2013)Google Scholar
  23. 23.
    S. Li, H. Yin, L. Fang, Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans. Biomed. Eng. 59, 3450–3459 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Chen, H. Liu, Z. Hu, H. Zhang, P. Shi, Y. Chen, Simultaneous reconstruction and segmentation of dynamic pet via low-rank and sparse matrix decomposition. IEEE Trans. Biomed. Eng. 62, 1784–1795 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Aharon, M. Elad, A.M. Bruckstein, The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    L. Fang, S. Li, X. Kang, J.A. Izatt, S. Farsiu, 3-D Adaptive sparsity based image compression with applications to optical coherence tomography. IEEE Trans. Med. Imag. 34, 1306–1320 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Kafieh, H. Rabbani, I. Selesnick, Three dimensional data-driven multi scale atomic representation of optical coherence tomography. IEEE Trans. Med. Imag. 34, 1042–1062 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Yang, J. Wright, T.S. Huang, Y. Ma, Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)Google Scholar
  30. 30.
    O. Bryt, M. Elad, Compression of facial images using the K-SVD algorithm. J. Vis. Commun. Image Represent. 19, 270–282 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Zepeda, C. Guillemot, E. Kijak, Image compression using sparse representations and the iteration-tuned and aligned dictionary. IEEE J. Sel. Topics Signal Process. 5, 1061–1073 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    K. Skretting, K. Engan, Image compression using learned dictionaries by RLS-DLA and compared with K-SVD. in Proceedings of IEEE International Conference on Acoustics Speech Signal Processing, pp. 1517–1520 (2011)Google Scholar
  33. 33.
    A. Foi, Noise estimation and removal in MR imaging. in Proceeding of IEEE International Symposium Biomedical Imaging (2011), pp. 1809–1814Google Scholar
  34. 34.
    S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    P. Chatterjee, P. Milanfar, Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process. 18, 1438–1451 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    W. Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20, 1838–1857 (2011)Google Scholar
  37. 37.
    W. Dong, L. Zhang, G. Shi, Centralized sparse representation for image restoration. in IEEE International Conference on Computer Vision, pp. 1259–1266 (2011)Google Scholar
  38. 38.
    J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration. in Proceedings of IEEE International Conference on Computer Vision, pp. 2272–2279 (2009)Google Scholar
  39. 39.
    F. Luisier, T. Blu, M. Unser, A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16, 1057–7149 (2007)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Thévenaz, U.E. Ruttimann, M. Unser, A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    G. Cincotti, G. Loi, M. Pappalardo, Frequency decomposition and compounding of ultrasound medical images with wavelets packets. IEEE Trans. Med. Imag. 20, 764–771 (2001)CrossRefGoogle Scholar
  43. 43.
    P. Bao, L. Zhang, Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Trans. Med. Imag. 22, 1089–1099 (2003)CrossRefGoogle Scholar
  44. 44.
    S.J. Chiu, X.T. Li, P. Nicholas, C.A. Toth, J.A. Izatt, S. Farsiu, Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18, 19413–19428 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    R. Zeyde, M. Elad, M. Protter, On single image scale-up using sparse-representations. in Curves Surfaces, pp. 711–730 (2012)CrossRefGoogle Scholar
  46. 46.
    K.S. Ni, T.Q. Nguyen, Image superresolution using support vector regression. IEEE Trans. Image Process. 16, 1596–1610 (2007)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    A.W. Scott, S. Farsiu, L.B. Enyedi, D.K. Wallace, C.A. Toth, Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am. J. Ophthalmol. 147, 364–373 (2009)CrossRefGoogle Scholar
  48. 48.
    J. Yang, Z. Wang, Z. Lin, S. Cohen, T. Huang, Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21, 3467–3478 (2012)Google Scholar
  49. 49.
    S. Wang, L. Zhang, Y. Liang, Q. Pan, Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. in Proceedings of IEEE International Conference on Computer Vision Pattern Recognition, pp. 2216–2223 (2012)Google Scholar
  50. 50.
    J.A. Tropp, A.C. Gilbert, M.J. Strauss, Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86, 572–588 (2006)zbMATHCrossRefGoogle Scholar
  51. 51.
    E. Candes, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Prob. 23, 969–985 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    S. Farsiu, S.J. Chiu, R.V. O’Connell, F.A. Folgar, E. Yuan, J.A. Izatt et al., Quantitative classification of eyes with and without intermediate age-related aacular degeneration using optical coherence tomography. Ophthalmology 121, 162–172 (2014)CrossRefGoogle Scholar
  53. 53.
    C. Guillemot, F. Pereira, L. Torres, T. Ebrahimi, R. Leonardi, J. Ostermann, Distributed monoview and multiview video coding. IEEE Signal Process. Mag. 24, 67–76 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    J.Y. Lee, S.J. Chiu, P. Srinivasan, J.A. Izatt, C.A. Toth, S. Farsiu et al., Fully automatic software for quantification of retinal thickness and volume in eyes with diabetic macular edema from images acquired by cirrus and spectralis spectral domain optical coherence tomography machines. Invest. Ophthalmol. Vis. Sci. 54, 7595–7602 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Jiao, R. Knighton, X. Huang, G. Gregori, C. Puliafito, Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. Opt. Express 13, 444–452 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    A. Cameron, D. Lui, A. Boroomand, J. Glaister, A. Wong, K. Bizheva, Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling. Biomed. Opt. Exp. 4, 1769–1785 (2013)CrossRefGoogle Scholar
  57. 57.
    Y. Chen, N.M. Nasrabadi, T.D. Tran, Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49, 3973–3985 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    L. Fang, S. Li, X. Kang, J.A. Benediktsson, Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 52, 7738–7749 (2014)Google Scholar
  59. 59.
    K. Skretting, J.H. Husøy, S.O. Aase, Improved Huffman coding using recursive splitting. in Proceedings of Norwegian Signal Processing, NORSIG, pp. 92–95 (1999)Google Scholar
  60. 60.
    A. Said, W.A. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)CrossRefGoogle Scholar
  61. 61.
    Software was downloaded at: http://www.apple.com/quicktime/extending/
  62. 62.
    L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)Google Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaChina

Personalised recommendations