Microglia in the CNS and Neuropathic Pain

  • Makoto Tsuda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)


Neuropathic pain occurring after peripheral nerve injury is not simply a consequence of temporal continuity of acute nociceptive signals, but rather of maladaptive nervous system function. Over the past decades, a body of literature has provided evidence for the necessity and sufficiency of microglia, the tissue-resident macrophages of the central nervous system, for nerve injury-induced alterations in synaptic function. Recent studies have also revealed active roles for microglia in brain regions important for emotion and memory. In this chapter, I highlight recent advances in our understanding of the mechanisms that underlie the role of spinal and brain microglia in neuropathic pain, with a focus on how microglia are activated and alter synaptic function. I also discuss the therapeutic potential of microglia from recent advances in the development of new drugs targeting microglia, which may facilitate translation from the bench to bedside.


Microglia Neuropathic pain Spinal cord Brain 



This work was supported by JSPS KAKENHI Grant Numbers JP15H02522, by the Core Research for Evolutional Science and Technology (CREST) program from Japan Agency for Medical Research and Development (AMED), by the Practical Research Project for Allergic Diseases and Immunology (Research on Allergic Diseases and Immunology) from AMED, by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP18am0101091, and by the Toray Science Foundation.


  1. 1.
    Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T et al (2011) Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 30:1864–1873CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bliss TV, Collingridge GL, Kaang BK, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17:485–496CrossRefGoogle Scholar
  5. 5.
    Braz J, Solorzano C, Wang X, Basbaum AI (2014) Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82:522–536CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF, Mousseau M et al (2017) Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nat Med 23:355–360CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA et al (2010) Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 30:5437–5450CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen G, Park CK, Xie RG, Berta T, Nedergaard M, Ji RR (2014) Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain 137:2193–2209CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkuhler J (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clark AK, Malcangio M (2014) Fractalkine/CX3CR1 signaling during neuropathic pain. Front Cell Neurosci 8:121CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M (2010) P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30:573–582CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F et al (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 104:10655–10660CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR et al (2017) Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 23:164–173CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davalos D, Akassoglou K (2012) In vivo imaging of the mouse spinal cord using two-photon microscopy. J Vis Exp 59:e2760Google Scholar
  18. 18.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Del Rio-Hortega P (1919) El tercer elemento de los centros nerviosos I La microglia en estado normal II Intervencíon de la microglia en los procesos patológicos III Naturaleza probable de la microglia. Bol Soc Biol 9:69–120Google Scholar
  20. 20.
    Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fam SR, Gallagher CJ, Salter MW (2000) P2Y(1) purinoceptor-mediated Ca(2+) signaling and Ca(2+) wave propagation in dorsal spinal cord astrocytes. J Neurosci 20:2800–2808CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ferrini F, Trang T, Mattioli TA, Laffray S, Del’Guidice T, Lorenzo LE et al (2013) Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci 16:183–192CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ et al (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29:4096–4108CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gehrmann J, Banati RB (1995) Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J Neuropathol Exp Neurol 54:680–688CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gilmore SA (1975) Proliferation of non-neuronal cells in spinal cords of irradiated, immature rats following transection of the sciatic nerve. Anat Rec 181:799–811CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gilmore SA, Skinner RD (1979) Intraspinal non-neuronal cellular responses to peripheral nerve injury. Anat Rec 194:369–387CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gu N, Peng J, Murugan M, Wang X, Eyo UB, Sun D et al (2016) Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep 16:605–614CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Guan Z, Kuhn JA, Wang X, Colquitt B, Solorzano C, Vaman S et al (2016) Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat Neurosci 19:94–101CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB et al (2006) The P2Y(12) receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hewitt E, Pitcher T, Rizoska B, Tunblad K, Henderson I, Sahlberg BL et al (2016) Selective Cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J Pharmacol Exp Ther 358:387–396CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hildebrand ME, Xu J, Dedek A, Li Y, Sengar AS, Beggs S et al (2016) Potentiation of synaptic GluN2B NMDAR currents by Fyn kinase is gated through BDNF-mediated disinhibition in spinal pain processing. Cell Rep 17:2753–2765CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Horvath RJ, Romero-Sandoval EA, De Leo JA (2010) Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150:401–413CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H et al (2013) Microglia release ATP by exocytosis. Glia 61:1320–1330CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57:1469–1479CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Inoue K, Tsuda M (2018) Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 19:138–152CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jacobson KA, Muller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13:533–548CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jin SX, Zhuang ZY, Woolf CJ, Ji RR (2003) p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23:4017–4022CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2:241–245CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kanda H, Kobayashi K, Yamanaka H, Okubo M, Noguchi K (2017) Microglial TNFalpha induces COX2 and PGI2 synthase expression in spinal endothelial cells during neuropathic pain. eNeuro 4. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kato Y, Hiasa M, Ichikawa R, Hasuzawa N, Kadowaki A, Iwatsuki K et al (2017) Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. Proc Natl Acad Sci U S A 114:E6297–E6305CrossRefGoogle Scholar
  50. 50.
    Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kobayashi K, Takahashi E, Miyagawa Y, Yamanaka H, Noguchi K (2011) Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model. Neurosci Lett 504:57–61CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H (2016) TREM2/DAP12 signal elicits proinflammatory response in microglia and exacerbates neuropathic pain. J Neurosci 36:11138–11150CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kohro Y, Sakaguchi E, Tashima R, Tozaki-Saitoh H, Okano H, Inoue K et al (2015) A new minimally-invasive method for microinjection into the mouse spinal dorsal horn. Sci Rep 5:14306CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J (2016) Gliogenic LTP spreads widely in nociceptive pathways. Science 354:1144–1148CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kuner R, Flor H (2016) Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci 18:20–30CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Larochelle A, Bellavance MA, Michaud JP, Rivest S (2015) Bone marrow-derived macrophages and the CNS: an update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim Biophys Acta 1862:310–322CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Leduc-Pessah H, Weilinger NL, Fan CY, Burma NE, Thompson RJ, Trang T (2017) Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance. J Neurosci 37:10154–10172CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lim H, Lee H, Noh K, Lee SJ (2017) IKK/NF-kappaB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 158:1666–1677CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J et al (2017) TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 37:871–881CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Masuda T, Iwamoto S, Mikuriya S, Tozaki-Saitoh H, Tamura T, Tsuda M et al (2015) Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. J Pharmacol Sci 128:216–220CrossRefPubMedPubMedCentral