Microglia in the CNS and Neuropathic Pain

  • Makoto TsudaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)


Neuropathic pain occurring after peripheral nerve injury is not simply a consequence of temporal continuity of acute nociceptive signals, but rather of maladaptive nervous system function. Over the past decades, a body of literature has provided evidence for the necessity and sufficiency of microglia, the tissue-resident macrophages of the central nervous system, for nerve injury-induced alterations in synaptic function. Recent studies have also revealed active roles for microglia in brain regions important for emotion and memory. In this chapter, I highlight recent advances in our understanding of the mechanisms that underlie the role of spinal and brain microglia in neuropathic pain, with a focus on how microglia are activated and alter synaptic function. I also discuss the therapeutic potential of microglia from recent advances in the development of new drugs targeting microglia, which may facilitate translation from the bench to bedside.


Microglia Neuropathic pain Spinal cord Brain 



This work was supported by JSPS KAKENHI Grant Numbers JP15H02522, by the Core Research for Evolutional Science and Technology (CREST) program from Japan Agency for Medical Research and Development (AMED), by the Practical Research Project for Allergic Diseases and Immunology (Research on Allergic Diseases and Immunology) from AMED, by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP18am0101091, and by the Toray Science Foundation.


  1. 1.
    Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T et al (2011) Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 30:1864–1873CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bliss TV, Collingridge GL, Kaang BK, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17:485–496CrossRefGoogle Scholar
  5. 5.
    Braz J, Solorzano C, Wang X, Basbaum AI (2014) Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82:522–536CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF, Mousseau M et al (2017) Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nat Med 23:355–360CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA et al (2010) Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 30:5437–5450CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen G, Park CK, Xie RG, Berta T, Nedergaard M, Ji RR (2014) Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain 137:2193–2209CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkuhler J (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clark AK, Malcangio M (2014) Fractalkine/CX3CR1 signaling during neuropathic pain. Front Cell Neurosci 8:121CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M (2010) P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 30:573–582CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F et al (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 104:10655–10660CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR et al (2017) Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 23:164–173CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davalos D, Akassoglou K (2012) In vivo imaging of the mouse spinal cord using two-photon microscopy. J Vis Exp 59:e2760Google Scholar
  18. 18.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Del Rio-Hortega P (1919) El tercer elemento de los centros nerviosos I La microglia en estado normal II Intervencíon de la microglia en los procesos patológicos III Naturaleza probable de la microglia. Bol Soc Biol 9:69–120Google Scholar
  20. 20.
    Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fam SR, Gallagher CJ, Salter MW (2000) P2Y(1) purinoceptor-mediated Ca(2+) signaling and Ca(2+) wave propagation in dorsal spinal cord astrocytes. J Neurosci 20:2800–2808CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ferrini F, Trang T, Mattioli TA, Laffray S, Del’Guidice T, Lorenzo LE et al (2013) Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci 16:183–192CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ et al (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29:4096–4108CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gehrmann J, Banati RB (1995) Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J Neuropathol Exp Neurol 54:680–688CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gilmore SA (1975) Proliferation of non-neuronal cells in spinal cords of irradiated, immature rats following transection of the sciatic nerve. Anat Rec 181:799–811CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gilmore SA, Skinner RD (1979) Intraspinal non-neuronal cellular responses to peripheral nerve injury. Anat Rec 194:369–387CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gu N, Peng J, Murugan M, Wang X, Eyo UB, Sun D et al (2016) Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep 16:605–614CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Guan Z, Kuhn JA, Wang X, Colquitt B, Solorzano C, Vaman S et al (2016) Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat Neurosci 19:94–101CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB et al (2006) The P2Y(12) receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hewitt E, Pitcher T, Rizoska B, Tunblad K, Henderson I, Sahlberg BL et al (2016) Selective Cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J Pharmacol Exp Ther 358:387–396CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hildebrand ME, Xu J, Dedek A, Li Y, Sengar AS, Beggs S et al (2016) Potentiation of synaptic GluN2B NMDAR currents by Fyn kinase is gated through BDNF-mediated disinhibition in spinal pain processing. Cell Rep 17:2753–2765CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Horvath RJ, Romero-Sandoval EA, De Leo JA (2010) Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150:401–413CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H et al (2013) Microglia release ATP by exocytosis. Glia 61:1320–1330CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57:1469–1479CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Inoue K, Tsuda M (2018) Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 19:138–152CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jacobson KA, Muller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13:533–548CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jin SX, Zhuang ZY, Woolf CJ, Ji RR (2003) p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23:4017–4022CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2:241–245CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kanda H, Kobayashi K, Yamanaka H, Okubo M, Noguchi K (2017) Microglial TNFalpha induces COX2 and PGI2 synthase expression in spinal endothelial cells during neuropathic pain. eNeuro 4. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kato Y, Hiasa M, Ichikawa R, Hasuzawa N, Kadowaki A, Iwatsuki K et al (2017) Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. Proc Natl Acad Sci U S A 114:E6297–E6305CrossRefGoogle Scholar
  50. 50.
    Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kobayashi K, Takahashi E, Miyagawa Y, Yamanaka H, Noguchi K (2011) Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model. Neurosci Lett 504:57–61CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H (2016) TREM2/DAP12 signal elicits proinflammatory response in microglia and exacerbates neuropathic pain. J Neurosci 36:11138–11150CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kohro Y, Sakaguchi E, Tashima R, Tozaki-Saitoh H, Okano H, Inoue K et al (2015) A new minimally-invasive method for microinjection into the mouse spinal dorsal horn. Sci Rep 5:14306CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J (2016) Gliogenic LTP spreads widely in nociceptive pathways. Science 354:1144–1148CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kuner R, Flor H (2016) Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci 18:20–30CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Larochelle A, Bellavance MA, Michaud JP, Rivest S (2015) Bone marrow-derived macrophages and the CNS: an update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim Biophys Acta 1862:310–322CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Leduc-Pessah H, Weilinger NL, Fan CY, Burma NE, Thompson RJ, Trang T (2017) Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance. J Neurosci 37:10154–10172CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lim H, Lee H, Noh K, Lee SJ (2017) IKK/NF-kappaB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 158:1666–1677CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J et al (2017) TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 37:871–881CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Masuda T, Iwamoto S, Mikuriya S, Tozaki-Saitoh H, Tamura T, Tsuda M et al (2015) Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. J Pharmacol Sci 128:216–220CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Masuda T, Iwamoto S, Yoshinaga R, Tozaki-Saitoh H, Nishiyama A, Mak TW et al (2014) Transcription factor IRF5 drives P2X4R+−reactive microglia gating neuropathic pain. Nat Commun 5:3771CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Masuda T, Ozono Y, Mikuriya S, Kohro Y, Tozaki-Saitoh H, Iwatsuki K et al (2016) Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 7:12529CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T et al (2012) IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep 1:334–340CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Matsumura Y, Yamashita T, Sasaki A, Nakata E, Kohno K, Masuda T et al (2016) A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci Rep 6:32461CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Miyamoto K, Kume K, Ohsawa M (2017) Role of microglia in mechanical allodynia in the anterior cingulate cortex. J Pharmacol Sci 134:158–165CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Miyoshi K, Obata K, Kondo T, Okamura H, Noguchi K (2008) Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci 28:12775–12787CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S et al (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22:1358–1367CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Nakatsuka T, Gu JG (2001) ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci 21:6522–6531CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ni HD, Yao M, Huang B, Xu LS, Zheng Y, Chu YX et al (2016) Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J Neurosci Res 94:50–61CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318CrossRefGoogle Scholar
  74. 74.
    Ohgidani M, Kato TA, Hosoi M, Tsuda M, Hayakawa K, Hayaki C et al (2017) Fibromyalgia and microglial TNF-alpha: translational research using human blood induced microglia-like cells. Sci Rep 7:11882CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ohgidani M, Kato TA, Setoyama D, Sagata N, Hashimoto R, Shigenobu K et al (2014) Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Sci Rep 4:4957CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Oida H, Namba T, Sugimoto Y, Ushikubi F, Ohishi H, Ichikawa A et al (1995) In situ hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 116:2828–2837CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Okubo M, Yamanaka H, Kobayashi K, Dai Y, Kanda H, Yagi H et al (2016) Macrophage-colony stimulating factor derived from injured primary afferent induces proliferation of spinal microglia and neuropathic pain in rats. PLoS One 11:e0153375CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Park CK, Lu N, Xu ZZ, Liu T, Serhan CN, Ji RR (2011) Resolving TRPV1- and TNF-alpha-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci 31:15072–15085CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354:578–584CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Reeve AJ, Patel S, Fox A, Walker K, Urban L (2000) Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 4:247–257CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sawada A, Niiyama Y, Ataka K, Nagaishi K, Yamakage M, Fujimiya M (2014) Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. Pain 155:1762–1772CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H et al (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK et al (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18:1081–1083CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584CrossRefGoogle Scholar
  86. 86.
    Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 102:5856–5861CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tashima R, Mikuriya S, Tomiyama D, Shiratori-Hayashi M, Yamashita T, Kohro Y et al (2016) Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury. Sci Rep 6:23701CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar et al (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20:793–803CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Taylor AM, Castonguay A, Taylor AJ, Murphy NP, Ghogha A, Cook C et al (2015) Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci 35:8442–8450CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Taylor AM, Mehrabani S, Liu S, Taylor AJ, Cahill CM (2017) Topography of microglial activation in sensory- and affect-related brain regions in chronic pain. J Neurosci Res 95:1330–1335CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29:3518–3528CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28:101–107CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H et al (2011) JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain 134:1127–1139CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K (2009a) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K (2009b) IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci U S A 106:8032–8037CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K (2013) P2X4 receptors and neuropathic pain. Front Cell Neurosci 7:191CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Tsuda M, Toyomitsu E, Komatsu T, Masuda T, Kunifusa E, Nasu-Tada K et al (2008a) Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 56:579–585CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T et al (2008b) Lyn tyrosine kinase is required for P2X(4) receptor upregulation and neuropathic pain after peripheral nerve injury. Glia 56:50–58CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23:8692–8700CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36:209–217CrossRefGoogle Scholar
  103. 103.
    Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M et al (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753–760CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Wang Z, Ma W, Chabot JG, Quirion R (2009) Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. FASEB J 23:2576–2586CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S (2007) Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 27:12396–12406CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Zhao J, Seereeram A, Nassar MA, Levato A, Pezet S, Hathaway G et al (2006) Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol Cell Neurosci 31:539–548CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Zhou D, Chen ML, Zhang YQ, Zhao ZQ (2010) Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats. J Neurosci 30:8042–8047CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Zhuang ZY, Kawasaki Y, Tan PH, Wen YR, Huang J, Ji RR (2007) Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 21:642–651CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR et al (2006) A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci 26:3551–3560CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Life Innovation, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations