Advertisement

Neuroimaging Studies of Primary Dysmenorrhea

  • Intan Low
  • Shyh-Yuh Wei
  • Pin-Shiuan Lee
  • Wei-Chi Li
  • Lin-Chien Lee
  • Jen-Chuen Hsieh
  • Li-Fen Chen
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)

Abstract

Primary dysmenorrhea (PDM), cyclic menstrual pain in the absence of pelvic anomalies, is one of the most common gynecological disorders in reproductive females. Classified as chronic pelvic pain syndrome, PDM encompasses recurrent spontaneous painful (“on”) and pain-free (“off”) states and is thus a good clinical model to study state- and trait-related changes of pain in the brain. In this chapter, we summarize state-of-the-art neuroimaging studies of primary dysmenorrhea from phenotype and endophenotype to genotype facets. Structural and functional brain alterations associated with primary dysmenorrhea are discussed.

Keywords

Primary dysmenorrhea Chronic pelvic pain Neuroplasticity Resting-state Descending pain modulatory system Genetic polymorphism 

Notes

Acknowledgments

These studies and our laboratories were financially supported by the Ministry of Science Technology, Ministry of Education, National Yang-Ming University, Taipei Veterans General Hospital, and the Joint research program between Taipei Veterans General Hospital and National Taiwan University Hospital. We thank Dr. Hsiang-Tai Chao for performing the clinical assessment and Dr. Ming-Wei Lin for performing the genotyping of these studies. All participants are thanked for their support and contribution to these studies.

References

  1. 1.
    Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329.  https://doi.org/10.1016/j.nurt.2007.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Altman G, Cain KC, Motzer S, Jarrett M, Burr R, Heitkemper M (2006) Increased symptoms in female IBS patients with dysmenorrhea and PMS. Gastroenterol Nurs 29:4–11.  https://doi.org/10.1097/00001610-200601000-00002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amodei N, Nelson-Gray RO (1989) Reactions of dysmenorrheic and nondysmenorrheic women to experimentally induced pain throughout the menstrual cycle. J Behav Med 12:373–385.  https://doi.org/10.1007/BF00844930 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baillet S (2017) Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 20:327–339.  https://doi.org/10.1038/nn.4504 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bajaj P, Bajaj P, Madsen H, Arendt-Nielsen L (2002) A comparison of modality-specific somatosensory changes during menstruation in dysmenorrheic and nondysmenorrheic women. Clin J Pain 18:180–190CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Baliki MN, Schnitzer TJ, Bauer WR, Apkarian AV (2011) Brain morphological signatures for chronic pain. PLoS One 6. : https://doi.org/10.1371/journal.pone.0026010 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barnard K, Frayne SM, Skinner KM, Sullivan LM (2003) Health status among women with menstrual symptoms. J Women's Health 12:911–919.  https://doi.org/10.1089/154099903770948140 CrossRefGoogle Scholar
  8. 8.
    Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 15:435–455.  https://doi.org/10.1002/nbm.782 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575–605.  https://doi.org/10.1016/0301-0082(95)00009-K CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Berkley KJ (2013) Primary dysmenorrhea: an urgent mandate. Pain: Clin Updates 21:1–8Google Scholar
  11. 11.
    Berman SM, Naliboff BD, Suyenobu B, Labus JS, Stains J, Ohning G, Kilpatrick L, Bueller JA, Ruby K, Jarcho J, Mayer EA (2008) Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci 28:349–359.  https://doi.org/10.1523/JNEUROSCI.2500-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541.  https://doi.org/10.1002/mrm.1910340409 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brinkert W, Dimcevski G, Arendt-Nielsen L, Drewes AM, Wilder-Smith OH (2007) Dysmenorrhoea is associated with hypersensitivity in the sigmoid colon and rectum. Pain 132(Suppl):S46–S51.  https://doi.org/10.1016/j.pain.2006.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38.  https://doi.org/10.1196/annals.1440.011 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Burgmer M, Petzke F, Giesecke T, Gaubitz M, Heuft G, Pfleiderer B (2011) Cerebral activation and catastrophizing during pain anticipation in patients with fibromyalgia. Psychosom Med 73:751–759.  https://doi.org/10.1097/PSY.0b013e318236588a CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29:7869–7876CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bushnell MC, Čeko M, Low LA (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14:502–511.  https://doi.org/10.1038/nrn3516.Cognitive CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Buskila D (2007) Genetics of chronic pain states. Best Pract Res Clin Rheumatol 21:535–547.  https://doi.org/10.1016/j.berh.2007.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14:506–515.  https://doi.org/10.1016/j.tics.2010.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carrive P, Morgan MM (2012) Periaqueductal Gray. Hum Nerv Sys Elsevier  https://doi.org/10.1016/B978-0-12-374236-0.10010-0 CrossRefGoogle Scholar
  21. 21.
    Cauda F, Palermo S, Costa T, Torta R, Duca S, Vercelli U, Geminiani G, Torta DME (2014) Gray matter alterations in chronic pain: a network-oriented meta-analytic approach. NeuroImage: Clin 4:676–686.  https://doi.org/10.1016/j.nicl.2014.04.007 CrossRefGoogle Scholar
  22. 22.
    Chan HL, Chen YS, Chen LF, Baillet S (2015) Beamformer-based imaging of phase-amplitude coupling using electromagnetic brain activity. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEEGoogle Scholar
  23. 23.
    Chen Y-S, Cheng C-Y, Hsieh J-C, Chen L-F (2006) Maximum contrast beamformer for electromagnetic mapping of brain activity. IEEE Trans Biomed Eng 53:1765–1774CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen Z, Patel P, Sant G, Meng C, Teng K, Hempstead B, Lee F (2004) Variant Brain-Derived Neurotrophic Factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 24:4401–4411.  https://doi.org/10.1523/JNEUROSCI.0348-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cheng Y, Yang C-Y, Lin C-P, Lee P-L, Decety J (2008) The perception of pain in others suppresses somatosensory oscillations: a magnetoencephalography study. NeuroImage 40:1833–1840CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chung SD, Liu SP, Lin HC, Kang JH (2014) Association of dysmenorrhea with interstitial cystitis/bladder pain syndrome: a case-control study. Acta Obstet Gynecol Scand 93:921–925.  https://doi.org/10.1111/aogs.12437 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cifre I, Sitges C, Fraiman D, Muñoz MA, Balenzuela P, González-Roldán AM, Martínez-Jauand M, Birbaumer N, Chialvo DR, Montoya P (2012) Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom Med 74:55–62.  https://doi.org/10.1097/PSY.0b013e3182408f04 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Costa M, Goldberger AL, Peng C-K (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:6–9.  https://doi.org/10.1103/PhysRevLett.89.068102 CrossRefGoogle Scholar
  29. 29.
    Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlinear Soft Matter Phys 71:1–18.  https://doi.org/10.1103/PhysRevE.71.021906 CrossRefGoogle Scholar
  30. 30.
    Covington HE, Maze I, Sun H, Bomze HM, DeMaio KD, Wu EY, Dietz DM, Lobo MK, Ghose S, Mouzon E, Neve RL, Tamminga CA, Nestler EJ (2011) A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71:656–670.  https://doi.org/10.1016/j.neuron.2011.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Davis KD, Flor H, Greely HT, Iannetti GD, Mackey S, Ploner M, Pustilnik A, Tracey I, Treede R-D, Wager TD (2017) Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 13:624–638.  https://doi.org/10.1038/nrneurol.2017.122 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dawood MY (1985) Dysmenorrhea. J Reprod Med 30:154–167PubMedPubMedCentralGoogle Scholar
  34. 34.
    Dawood MY (2006) Primary dysmenorrhea: advances in pathogenesis and management. Obstet Gynecol 108:428–441.  https://doi.org/10.1097/01.AOG.0000230214.26638.0c CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Denk F, McMahon SB, Tracey I (2014) Pain vulnerability: a neurobiological perspective. Nat Neurosci 17.  https://doi.org/10.1038/nn.3628 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Derbyshire SWG (2003) A systematic review of neuroimaging data during visceral stimulation. Am J Gastroenterol 98:12–20CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Desouza DD, Hodaie M, Davis KD (2014) Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia. Pain 155:37–44.  https://doi.org/10.1016/j.pain.2013.08.029 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Di Lorenzo C, Di Lorenzo G, Daverio A, Pasqualetti P, Coppola G, Giannoudas I, Barone Y, Grieco GS, Niolu C, Pascale E, Santorelli FM, Nicoletti F, Pierelli F, Siracusano A, Seri S (2012) The Val66Met polymorphism of the BDNF gene influences trigeminal pain-related evoked responses. J Pain 13:866–873.  https://doi.org/10.1016/j.jpain.2012.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dorn LD, Negriff S, Huang B, Pabst S, Hillman J, Braverman P, Susman EJ (2009) Menstrual symptoms in adolescent girls: association with smoking, depressive symptoms, and anxiety. J Adolesc Health 44:237–243.  https://doi.org/10.1016/j.jadohealth.2008.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dun W, Yang J, Yang L, Ma S, Guo C, Zhang X, Zhang H, Liu H, Zhang M (2017) Abnormal white matter integrity during pain-free periovulation is associated with pain intensity in primary dysmenorrhea. Brain Imaging Behav 11:1061–1070CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269.  https://doi.org/10.1016/S0092-8674(03)00035-7 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105–118.  https://doi.org/10.1038/nrn2979 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fields HL (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5:565–575.  https://doi.org/10.1038/nrn1431 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711.  https://doi.org/10.1038/nrn2201 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Frank L, Wiegand SJ, Siuciak JA, Lindsay RM, Rudge JS (1997) Effects of BDNF infusion on the regulation of TrkB protein and message in adult rat brain. Exp Neurol 145:62–70.  https://doi.org/10.1006/exnr.1997.6440 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29.  https://doi.org/10.1002/hbm.20113 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Garrett DD, Samanez-Larkin GR, MacDonald SWS, Lindenberger U, McIntosh AR, Grady CL (2013) Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev 37:610–624.  https://doi.org/10.1016/j.neubiorev.2013.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Giamberardino MA (2008) Women and visceral pain: are the reproductive organs the main protagonists? Mini-review at the occasion of the “European week against pain in women 2007”. Eur J Pain 12:257–260.  https://doi.org/10.1016/j.ejpain.2007.11.007 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14:21–36.  https://doi.org/10.1006/nimg.2001.0786 CrossRefGoogle Scholar
  50. 50.
    Gottmann K, Mittmann T, Lessmann V (2009) BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res 199:203–234.  https://doi.org/10.1007/s00221-009-1994-z CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Granot M, Yarnitsky D, Itskovitz-Eldor J, Granovsky Y, Peer E, Zimmer EZ (2001) Pain perception in women with dysmenorrhea. Obstet Gynecol 98:407–411PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hager B, Yang AC, Brady R, Meda S, Clementz B, Pearlson GD, Sweeney JA, Tamminga C, Keshavan M (2017) Neural complexity as a potential translational biomarker for psychosis. J Affect Disord 216:89–99.  https://doi.org/10.1016/j.jad.2016.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ham EA, Cirillo VJ, Zanetti ME, Kuehl FA (1975) Estrogen-directed synthesis of specific prostaglandins in uterus. Proc Natl Acad Sci U S A 72:1420–1424.  https://doi.org/10.1073/pnas.72.4.1420 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497.  https://doi.org/10.1103/RevModPhys.65.413 CrossRefGoogle Scholar
  55. 55.
    Hariri AR, Drabant EM, Weinberger DR (2006) Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol Psychiatry 59(10):888–897.  https://doi.org/10.1016/j.biopsych.2005.11.005 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hashmi JA, Baliki MN, Huang L, Baria AT, Torbey S, Hermann KM, Schnitzer TJ, Apkarian AV (2013) Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136:2751–2768.  https://doi.org/10.1093/brain/awt211 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Heinricher MM, Tavares I, Leith JL, Lumb BM (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev 60. NIH Public Access.  https://doi.org/10.1016/j.brainresrev.2008.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hong J-Y, Kilpatrick LA, Labus JS, Gupta A, Katibian D, Ashe-McNalley C, Stains J, Heendeniya N, Smith SR, Tillisch K, Naliboff B, Mayer EA (2014) Sex and disease-related alterations of anterior insula functional connectivity in chronic abdominal pain. J Neurosci 34:14252–14259.  https://doi.org/10.1523/JNEUROSCI.1683-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hyafil A, Giraud AL, Fontolan L, Gutkin B (2015) Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci 38:725–740.  https://doi.org/10.1016/j.tins.2015.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Iacovides S, Avidon I, Baker FC (2015) What we know about primary dysmenorrhea today: a critical review. Hum Reprod Update 21:762–778.  https://doi.org/10.1093/humupd/dmv039 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jacobson L, Sapolsky R (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12:118–134CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kong J, Tu P-C, Zyloney C, Su T-P (2010) Intrinsic functional connectivity of the periaqueductal gray, a resting fMRI study. Behav Brain Res 211:215–219.  https://doi.org/10.1016/j.bbr.2010.03.042.Intrinsic CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kucyi A, Davis KD (2015) The dynamic pain connectome. Trends Neurosci 38:86–95.  https://doi.org/10.1016/j.tins.2014.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2014) Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci 34:3969–3975.  https://doi.org/10.1523/JNEUROSCI.5055-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kuo PC, Chen YT, Chen YS, Chen LF (2017) Decoding the perception of endogenous pain from resting-state MEG. NeuroImage 144:1–11.  https://doi.org/10.1016/j.neuroimage.2016.09.040 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kutch JJ, Tu FF (2016) Altered brain connectivity in dysmenorrhea: pain modulation and the motor cortex. Pain 157:5–6.  https://doi.org/10.1097/j.pain.0000000000000364 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926.  https://doi.org/10.1016/j.jpain.2009.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    LeDoux J (2007) The amygdala. Curr Biol 17(20):R868–R874.  https://doi.org/10.1016/j.cub.2007.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lee L-C, Tu C-H, Chen L-F, Shen H-D, Chao H-T, Lin M-W, Hsieh J-C (2014) Association of brain-derived neurotrophic factor gene VAL66MET polymorphism with primary dysmenorrhea. PLoS One 9:e112766.  https://doi.org/10.1371/journal.pone.0112766 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lee PS, Low I, Chen YS, Tu CH, Chao HT, Hsieh JC, Chen LF (2017) Encoding of menstrual pain experience with theta oscillations in women with primary dysmenorrhea. Sci Rep 7:15977.  https://doi.org/10.1038/s41598-017-16039-4 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106:17558–17563.  https://doi.org/10.1073/pnas.0902455106 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Li WC, Tu CH, Chao HT, Yeh TC, Chen LF, Hsieh JC (2015) High prevalence of incidental brain findings in primary dysmenorrhoea. Eur J Pain 19:1071–1074CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Liang WK, Lo MT, Yang AC, Peng CK, Cheng SK, Tseng P, Juan CH (2014) Revealing the brain’s adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. NeuroImage 90:218–234.  https://doi.org/10.1016/j.neuroimage.2013.12.048 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lieberman G, Shpaner M, Watts R, Andrews T, Filippi CG, Davis M, Naylor MR (2014) White matter involvement in chronic musculoskeletal pain. J Pain 15:1110–1119.  https://doi.org/10.1016/j.jpain.2014.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lin CS, Liu Y, Huang WY, Lu CF, Teng S, Ju TC, He Y, Wu YT, Jiang T, Hsieh JC (2013) Sculpting the intrinsic modular organization of spontaneous brain activity by art. PLoS One 8:1–13.  https://doi.org/10.1371/journal.pone.0066761 CrossRefGoogle Scholar
  77. 77.
    Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D (2012) Neuroimaging of the periaqueductal gray: state of the field. NeuroImage 60:505–522.  https://doi.org/10.1016/j.neuroimage.2011.11.095 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Liu CC, Chien JH, Kim JH, Chuang YF, Cheng DT, Anderson WS, Lenz FA (2015) Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs. Neuroscience 303:412–421CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Liu J, Liu H, Mu J, Xu Q, Chen T, Dun W, Yang J, Tian J, Hu L, Zhang M (2017a) Altered white matter microarchitecture in the cingulum bundle in women with primary dysmenorrhea: a tract-based analysis study. Hum Brain Mapp 38:4430–4443.  https://doi.org/10.1002/hbm.23670 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Liu P, Wang G, Liu Y, Yu Q, Yang F, Jin L, Sun J, Yang X, Qin W, Calhoun VD (2016a) White matter microstructure alterations in primary dysmenorrhea assessed by diffusion tensor imaging. Sci Rep 6:25836.  https://doi.org/10.1038/srep25836 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Liu P, Yang J, Wang G, Liu Y, Liu X, Jin L, Liang F, Qin W, Calhoun VD (2016b) Altered regional cortical thickness and subcortical volume in women with primary dysmenorrhoea. Eur J Pain (U K) 20(4):512–520.  https://doi.org/10.1002/ejp.753 CrossRefGoogle Scholar
  82. 82.
    Liu Q, Chen YF, Fan SZ, Abbod MF, Shieh JS (2017b) EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery. Med Biol Eng Comput 55:1435–1450.  https://doi.org/10.1007/s11517-016-1598-2 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Low I, Kuo P-C, Liu Y-H, Tsai C-L, Chao H-T, Hsieh J-C, Chen L-F, Chen Y-S (2017) Altered brain complexity in women with primary dysmenorrhea: a resting-state magneto-encephalography study using multiscale entropy analysis. Entropy 19:680.  https://doi.org/10.3390/e19120680680 CrossRefGoogle Scholar
  84. 84.
    Macfarlane GJ, Jones GT, Mcbeth J (2013) Chapter 76 – epidemiology of pain, Wall and Melzack’s textbook of pain, vol 75, 6th edn. Elsevier Ltd, Philadelphia.  https://doi.org/10.1016/B978-0-7020-4059-7.00016-4 CrossRefGoogle Scholar
  85. 85.
    Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70:838–845.  https://doi.org/10.1002/ana.22537 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    McDonough IM, Nashiro K, Nagarajan SS, Chang C, Gorgolewski K (2014) Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project. Front Hum Neurosci 8:1–15.  https://doi.org/10.3389/fnhum.2014.00409 CrossRefGoogle Scholar
  87. 87.
    Melorose J, Perroy R, Careas S (2015) MEG: in introduction to methods. Statewide Agricultural Land Use Baseline 2015 1.  https://doi.org/10.1017/CBO9781107415324.004
  88. 88.
    Merighi A, Salio C, Ghirri A, Lossi L, Ferrini F, Betelli C, Bardoni R (2008) BDNF as a pain modulator. Prog Neurobiol 85:297–317.  https://doi.org/10.1016/j.pneurobio.2008.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Merskey H, Bogduk N (2002) Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. IASP Pain Terminology, Seattle, p 240Google Scholar
  90. 90.
    Mizoguchi K, Ishige A, Aburada M, Tabira T (2003) Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119:887–897CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Mogil JS (2012a) Pain genetics: past, present and future. Trends Genet 28:258–266.  https://doi.org/10.1016/j.tig.2012.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Mogil JS (2012b) Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nature Publishing Group, 1–8.  https://doi.org/10.1038/nrn3360 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Moses SN, Houck JM, Martin T, Hanlon FM, Ryan JD, Thoma RJ, Weisend MP, Jackson EM, Pekkonen E, Tesche CD (2007) Dynamic neural activity recorded from human amygdala during fear conditioning using magnetoencephalography. Brain Res Bull 71:452–460CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555.  https://doi.org/10.1002/art.27497 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Investig 120:3779–3787. American Society for Clinical Investigation.  https://doi.org/10.1172/JCI43766 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Pan J-C, Tsai Y-T, Lai J-N, Fang R-C, Yeh C-H (2014) The traditional Chinese medicine prescription pattern of patients with primary dysmenorrhea in Taiwan: a large-scale cross sectional survey. J Ethnopharmacol 152:314–319.  https://doi.org/10.1016/j.jep.2014.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Peng W, Tang D (2016) Pain related cortical oscillations: methodological advances and potential applications. Front Comput Neurosci 10:9.  https://doi.org/10.3389/fncom.2016.00009 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ploner M, May ES (2017) EEG and MEG in pain research – current state and future perspectives. Pain:1.  https://doi.org/10.1097/j.pain.0000000000001087 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ploner M, Sorg C, Gross J (2016) Brain rhythms of pain. Trends Cogn Sci 0:423–439.  https://doi.org/10.1016/j.tics.2016.12.001 CrossRefGoogle Scholar
  100. 100.
    Proctor M (2006) Diagnosis and management of dysmenorrhoea. BMJ 332:1134–1138.  https://doi.org/10.1136/bmj.332.7550.1134 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Quartana PJ, Campbell CM, Edwards RR (2009) Pain catastrophizing: a critical review. Expert Rev Neurother 9:745–758.  https://doi.org/10.1586/ern.09.34 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Rasetti R, Weinberger DR (2011) Intermediate phenotypes in psychiatric disorders. Curr Opin Genet Dev 21:340–348.  https://doi.org/10.1016/j.gde.2011.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Richman JS, MJ R, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049.  https://doi.org/10.1103/physreva.29.975 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A (2009) Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci 29:13746–13750CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Rogachov A, Cheng JC, Erpelding N, Hemington KS, Crawley AP, Davis KD (2016) Regional brain signal variability: a novel indicator of pain sensitivity and coping. Pain 157:2483–2492.  https://doi.org/10.1097/j.pain.0000000000000665 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Rolls ET (2015) Limbic systems for emotion and for memory, but no single limbic system. Cortex 62:119–157.  https://doi.org/10.1016/j.cortex.2013.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Rosenkranz MA, Davidson RJ (2009) Affective neural circuitry and mind-body influences in asthma. NeuroImage 47(3):972–980.  https://doi.org/10.1016/j.neuroimage.2009.05.042 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Sadler TW (2011) Langman’s medical embryologyGoogle Scholar
  109. 109.
    Sanjuan PM, Thoma R, Claus ED, Mays N, Caprihan A (2013) Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: a diffusion tensor imaging study. Psychiatry Res 214(3):260–268.  https://doi.org/10.1016/j.pscychresns.2013.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sarnthein J, Jeanmonod D (2008) High thalamocortical theta coherence in patients with neurogenic pain. NeuroImage 39:1910–1917.  https://doi.org/10.1016/j.neuroimage.2007.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32:1001–1013.  https://doi.org/10.1016/j.neubiorev.2008.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Schulman JJ, Ramirez RR, Zonenshayn M, Ribary U, Llinas R (2005) Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. Thalamus Relat Syst 3:33–39.  https://doi.org/10.1017/S1472928805000063 CrossRefGoogle Scholar
  113. 113.
    Schulte T, Sullivan EV, Müller-Oehring EM, Adalsteinsson E, Pfefferbaum A (2005) Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cereb Cortex 15:1384–1392CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Schwedt T, Larson-Prior L (2014) Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain 15:154–165CrossRefGoogle Scholar
  115. 115.
    Sia AT, Lim Y, Lim ECP, Goh RWC, Law HY, Landau R, Teo Y-Y, Tan EC (2008) A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 109:520–526.  https://doi.org/10.1097/ALN.0b013e318182af21 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Sitges C, Bornas X, Llabrés J, Noguera M, Montoya P (2010) Linear and nonlinear analyses of EEG dynamics during non-painful somatosensory processing in chronic pain patients. Int J Psychophysiol 77:176–183.  https://doi.org/10.1016/j.ijpsycho.2010.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis J, Clauw DJ, Williams DA, Schmidt-Wilcke T, Farrell MJ, Eickhoff SB (2013) Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain 14:663–675CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Soares JM, Marques P, Alves V, Sousa N (2013) A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci 7:31.  https://doi.org/10.3389/fnins.2013.00031 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Staud R (2012) Abnormal endogenous pain modulation is a shared characteristic of many chronic pain conditions. Expert Rev Neurother 12:577–585.  https://doi.org/10.1586/ern.12.41 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Sundell G, Milsom I, Andersch B (1990) Factors influencing the prevalence and severity of dysmenorrhoea in young women. BJOG Int J Obstet Gynaecol 97:588–594.  https://doi.org/10.1111/j.1471-0528.1990.tb02545.x CrossRefGoogle Scholar
  122. 122.
    Suzuki R, Rygh LJ, Dickenson AH (2004) Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25:613–617CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Tatu K, Costa T, Nani A, Diano M, Quarta DG, Duca S, Apkarian AV, Fox PT, Cauda F (2017) How do morphological alterations caused by chronic pain distribute across the brain? A meta-analytic co-alteration study. NeuroImage: Clin 18:15–30CrossRefGoogle Scholar
  124. 124.
    Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P (2011) Long-term effects of motor training on resting-state networks and underlying brain structure. NeuroImage 57:1492–1498.  https://doi.org/10.1016/j.neuroimage.2011.05.078 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A 91:5033–5037.  https://doi.org/10.1073/pnas.91.11.5033 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Treede R-D, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, Cohen M, Evers S, Finnerup NB, First MB, Giamberardino MA, Kaasa S, Kosek E, Lavandʼhomme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang S-J, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang S-J, Lavandʼhomme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang S-J, Lavand’homme P, Nicholas M, Perrot S, Scholz J, Schug S, Smith BH, Svensson P, Vlaeyen JWS, Wang S-J (2015) A classification of chronic pain for ICD-11. Pain 156:1003–1007.  https://doi.org/10.1097/j.pain.0000000000000160 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Trescot AM, Faynboym S (2014) A review of the role of genetic testing in pain medicine. Pain Physician 17:425–445PubMedPubMedCentralGoogle Scholar
  128. 128.
    Tseng BY, Gundapuneedi T, Khan MA, Diaz-Arrastia R, Levine BD, Lu H, Huang H, Zhang R (2013) White matter integrity in physically fit older adults. NeuroImage 82:510–516CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Tu C-H, Niddam DM, Chao H-T, Chen L-F, Chen Y-S, Wu Y-T, Yeh T-C, Lirng J-F, Hsieh J-C (2010) Brain morphological changes associated with cyclic menstrual pain. Pain 150:462–468.  https://doi.org/10.1016/j.pain.2010.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Tu C-H, Niddam DM, Chao H-T, Liu R-S, Hwang R-J, Yeh T-C, Hsieh J-C (2009) Abnormal cerebral metabolism during menstrual pain in primary dysmenorrhea. NeuroImage 47:28–35.  https://doi.org/10.1016/j.neuroimage.2009.03.080 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Tu C-H, Niddam DM, Yeh T-C, Lirng J-F, Cheng C-M, Chou C-C, Chao H-T, Hsieh J-C (2013) Menstrual pain is associated with rapid structural alterations in the brain. Pain 154:1718–1724.  https://doi.org/10.1016/j.pain.2013.05.022 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Tu Y, Zhang Z, Tan A, Peng W, Hung YS, Moayedi M, Iannetti GD, Hu L (2016) Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Hum Brain Mapp 37:501–514CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Ulrich-Lai YM, Xie W, Meij JTA, Dolgas CM, Yu L, Herman JP (2006) Limbic and HPA axis function in an animal model of chronic neuropathic pain. Physiol Behav 88:67–76CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Valencia JF, Melia USP, Vallverdú M, Borrat X, Jospin M, Jensen EW, Porta A, Gambús PL, Caminal P (2016) Assessment of nociceptive responsiveness levels during sedation-analgesia by entropy analysis of EEG. Entropy 18.  https://doi.org/10.3390/e18030103 CrossRefGoogle Scholar
  135. 135.
    Vossen H, Kenis G, Rutten B, van Os J, Hermens H, Lousberg R (2010) The genetic influence on the cortical processing of experimental pain and the moderating effect of pain status. PLoS One 5:1–6.  https://doi.org/10.1371/journal.pone.0013641 CrossRefGoogle Scholar
  136. 136.
    Walton KD, Dubois M, Llinás RR (2010) Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) Type I. Pain 150:41–51.  https://doi.org/10.1016/j.pain.2010.02.023 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Wang DJJ, Jann K, Fan C, Qiao Y, Zang Y-F, Lu H, Yang Y (2018) Neurophysiological basis of multi-scale entropy of brain complexity and its relationship with functional connectivity. Front Neurosci 12(352).  https://doi.org/10.3389/fnins.2018.00352
  138. 138.
    Wang L, Wang X, Wang W, Chen C, Ronnennberg A, Guang W, Huang A, Fang Z, Zang T, Wang L, Xu X (2004) Stress and dysmenorrhoea: a population based prospective study. Occup Environ Med 61:1021.  https://doi.org/10.1136/OEM.2003.012302 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wei S-Y, Chao H-T, Tu C-H, Li W-C, Low I, Chuang C-Y, Chen L-F, Hsieh J-C (2016a) Changes in functional connectivity of pain modulatory systems in women with primary dysmenorrhea. Pain 157:92–102CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Wei S-Y, Chao H-T, Tu C-H, Lin M-W, Li W-C, Low I, Shen H-D, Chen L-F, Hsieh J-C (2016b) The BDNF Val66Met polymorphism is associated with the functional connectivity dynamics of pain modulatory systems in primary dysmenorrhea. Sci Rep 6:23639.  https://doi.org/10.1038/srep23639 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Wei S-Y, Chen L-F, Lin M-W, Li W-C, Low I, Yang C-J, Chao H-T, Hsieh J-C (2017) The OPRM1 A118G polymorphism modulates the descending pain modulatory system for individual pain experience in young women with primary dysmenorrhea. Sci Rep 7:39906CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Wu T-H, Tu C-H, Chao H-T, Li W-C, Low I, Chuang C-Y, Yeh T-C, Cheng C-M, Chou C-C, Chen L-F (2016) Dynamic changes of functional pain connectome in women with primary dysmenorrhea. Sci Rep 6:24543CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Yang AC, Tsai SJ (2013) Is mental illness complex? From behavior to brain. Prog Neuro-Psychopharmacol Biol Psychiatry 45:253–257.  https://doi.org/10.1016/j.pnpbp.2012.09.015 CrossRefGoogle Scholar
  144. 144.
    Yao P, Ding Y-Y, Wang Z-B, Ma J-M, Hong T, Pan S-N (2015) Effect of gene polymorphism of COMT and OPRM1 on the preoperative pain sensitivity in patients with cancer. Int J Clin Exp Med 8:10036–10039PubMedPubMedCentralGoogle Scholar
  145. 145.
    Yin J-B, Wu H-H, Dong Y-L, Zhang T, Wang J, Zhang Y, Wei Y-Y, Lu Y-C, Wu S-X, Wang W, Li Y-Q (2014) Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circ 8:137.  https://doi.org/10.3389/fncir.2014.00137 CrossRefGoogle Scholar
  146. 146.
    Ylikorkala O, Puolakka J, Kauppila A (1979) Serum gonadotrophins, prolactin and ovarian steroids in primary dysmenorrhoea. BJOG Int J Obstet Gynaecol 86:648–653CrossRefGoogle Scholar
  147. 147.
    Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15:528.  https://doi.org/10.1038/nn.3045 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Zhang Y, Wang D, Johnson AD, Papp AC, Sadée W (2005) Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem 280:32618–32624.  https://doi.org/10.1074/jbc.M504942200 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Intan Low
    • 1
    • 2
  • Shyh-Yuh Wei
    • 1
  • Pin-Shiuan Lee
    • 3
  • Wei-Chi Li
    • 1
  • Lin-Chien Lee
    • 1
  • Jen-Chuen Hsieh
    • 1
    • 2
    • 4
  • Li-Fen Chen
    • 1
    • 2
    • 3
    • 4
  1. 1.Institute of Brain ScienceNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
  3. 3.Institute of Biomedical InformaticsNational Yang-Ming UniversityTaipeiTaiwan
  4. 4.Brain Research CenterNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations