Advertisement

Molecular Mechanisms of the Sense of Touch: An Overview of Mechanical Transduction and Transmission in Merkel Discs of Whisker Hair Follicles and Some Clinical Perspectives

  • Jianguo G. Gu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)

Abstract

The Merkel disc is a main type of tactile end organs for sensing gentle touch and is essential for sophisticated sensory tasks including social interaction, environmental exploration, and tactile discrimination. Recent studies have shown that Merkel cells are primary sites of mechanotransduction using Piezo2 channels as a molecular transducer in Merkel discs. Furthermore, tactile stimuli trigger serotonin release from Merkel cells to excite their associated whisker Aβ-afferent endings and transmit tactile signals. The tactile transduction and transmission at Merkel discs may have important clinical implications in sensory dysfunctions such as the loss of tactile sensitivity and tactile allodynia seen in patients who have diabetes and inflammatory diseases and undergo chemotherapy.

Keywords

Merkel disc Tactile sensation Whisker hair follicles Mechanical transduction and transmission Sensory dysfunction 

References

  1. 1.
    Abd-Elsayed AA, Ikeda R, Jia Z, Ling J, Zuo X et al (2015) KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia. Mol Pain 11:45CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79:618–639CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Albers J, Chaudhry V, Cavaletti G, Donehower R (2007) Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 24:CD005228Google Scholar
  4. 4.
    Banach M, Juranek JK, Zygulska AL (2017) Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav 7:e00558CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barton DL, Wos EJ, Qin R, Mattar BI, Green NB et al (2011) A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support Care Cancer 19:833–841CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Baumann KI, Chan E, Halata Z, Senok SS, Yung WH (1996) An isolated rat vibrissal preparation with stable responses of slowly adapting mechanoreceptors. Neurosci Lett 213:1–4CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bensmaia SJ, Craig JC, Yoshioka T, Johnson KO (2006) SA1 and RA afferent responses to static and vibrating gratings. J Neurophysiol 95:1771–1782CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Blake DT, Johnson KO, Hsiao SS (1997) Monkey cutaneous SAI and RA responses to raised and depressed scanned patterns: effects of width, height, orientation, and a raised surround. J Neurophysiol 78:2503–2517CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bosman LW, Houweling AR, Owens CB, Tanke N, Shevchouk OT et al (2011) Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 5:53CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bymaster FP, Beedle EE, Findlay J, Gallagher PT, Krushinski JH et al (2003) Duloxetine (Cymbalta), a dual inhibitor of serotonin and norepinephrine reuptake. Bioorg Med Chem Lett 13:4477–4480CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cahusac PM, Senok SS (2006) Metabotropic glutamate receptor antagonists selectively enhance responses of slowly adapting type I mechanoreceptors. Synapse 59:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cavaletti G, Marmiroli P (2010) Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol 6:657–666CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chang W, Kanda H, Ikeda R, Ling J, DeBerry JJ, Gu JG (2016) Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals. Proc Natl Acad Sci U S A 113:E5491–E5500CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Diamond J, Holmes M, Nurse CA (1986) Are Merkel cell-neurite reciprocal synapses involved in the initiation of tactile responses in salamander skin? J Physiol 376:101–120CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9:601–612CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Drew LJ, Rohrer DK, Price MP, Blaver KE, Cockayne DA et al (2004) Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J Physiol 556:691–710CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eijkelkamp N, Linley JE, Torres JM, Bee L, Dickenson AH et al (2013) A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun 4:1682CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fagan BM, Cahusac PM (2001) Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport 12:341–347CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Findlater GS, Cooksey EJ, Anand A, Paintal AS, Iggo A (1987) The effects of hypoxia on slowly adapting type I (SAI) cutaneous mechanoreceptors in the cat and rat. Somatosens Res 5:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fricke B, Lints R, Stewart G, Drummond H, Dodt G et al (2000) Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res 299:327–334PubMedPubMedCentralGoogle Scholar
  27. 27.
    Fukuda J, Ishimine H, Masaki Y (2003) Long-term staining of live Merkel cells with FM dyes. Cell Tissue Res 311:325–332PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gewandter JS, Mohile SG, Heckler CE, Ryan JL, Kirshner JJ et al (2014) A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study of 462 cancer survivors. Support Care Cancer 22:1807–1814CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gottschaldt KM, Vahle-Hinz C (1981) Merkel cell receptors: structure and transducer function. Science 214:183–186CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Haeberle H, Fujiwara M, Chuang J, Medina MM, Panditrao MV et al (2004) Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci U S A 101:14503–14508CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Haeberle H, Lumpkin EA (2008) Merkel cells in somatosensation. Chemosens Percept 1:110–118CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Halata Z, Grim M, Bauman KI (2003) Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: review and new results. Anat Rec A Discov Mol Cell Evol Biol 271:225–239CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hama A, Takamatsu H (2016) Chemotherapy-induced peripheral neuropathic pain and rodent models. CNS Neurol Disord Drug Targets 15:7–19CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    He L, Tuckett RP, English KB (2003) 5-HT2 and 3 receptor antagonists suppress the response of rat type I slowly adapting mechanoreceptor: an in vitro study. Brain Res 969:230–236CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hires SA, Efros AL, Svoboda K (2013) Whisker dynamics underlying tactile exploration. J Neurosci 33:9576–9591CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hoke A, Ray M (2014) Rodent models of chemotherapy-induced peripheral neuropathy. ILAR J 54:273–281CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hopkins HL, Duggett NA, Flatters SJ (2016) Chemotherapy-induced painful neuropathy: pain-like behaviours in rodent models and their response to commonly used analgesics. Curr Opin Support Palliat Care 10:119–128CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 200:763–796CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ikeda I, Yamashita Y, Ono T, Ogawa H (1994) Selective phototoxic destruction of rat Merkel cells abolishes responses of slowly adapting type I mechanoreceptor units. J Physiol 479(Pt 2):247–256CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ikeda R, Cha M, Ling J, Jia Z, Coyle D, Gu JG (2014) Merkel cells transduce and encode tactile stimuli to drive Abeta-afferent impulses. Cell 157:664–675CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ikeda R, Ling J, Cha M, Gu JG (2015) In situ patch-clamp recordings from Merkel cells in rat whisker hair follicles, an experimental protocol for studying tactile transduction in tactile-end organs. Mol Pain 11:23CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kautio AL, Haanpaa M, Kautiainen H, Kalso E, Saarto T (2011) Burden of chemotherapy-induced neuropathy – a cross-sectional study. Support Care Cancer 19:1991–1996CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kernan M, Cowan D, Zuker C (1994) Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12:1195–1206CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Khalsa PS, Friedman RM, Srinivasan MA, Lamotte RH (1998) Encoding of shape and orientation of objects indented into the monkey fingerpad by populations of slowly and rapidly adapting mechanoreceptors. J Neurophysiol 79:3238–3251CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Loprinzi CL, Reeves BN, Dakhil SR, Sloan JA, Wolf SL et al (2011) Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J Clin Oncol 29:1472–1478CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lou S, Duan B, Vong L, Lowell BB, Ma Q (2013) Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 33:870–882CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Majithia N, Loprinzi CL, Smith TJ (2016) New practical approaches to chemotherapy-induced neuropathic pain: prevention, assessment, and treatment. Oncology (Williston Park) 30:1020–1029Google Scholar
  51. 51.
    Maksimovic S, Baba Y, Lumpkin EA (2013) Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor. Ann N Y Acad Sci 1279:13–21CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–621CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ et al (2009) Merkel cells are essential for light-touch responses. Science 324:1580–1582CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Merkel F (1875) Tastzellen and Tastkoerperchen bei den Hausthieren und beim Menschen. Arch Mikroscop Anat 11:636–652CrossRefGoogle Scholar
  55. 55.
    Mills LR, Diamond J (1995) Merkel cells are not the mechanosensory transducers in the touch dome of the rat. J Neurocytol 24:117–134CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Munger BL (1965) The intraepidermal innervation of the snout skin of the opossum. A light and electron microscope study, with observations on the nature of Merkel’s Tastzellen. J Cell Biol 26:79–97CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Press D, Mutlu S, Guclu B (2010) Evidence of fast serotonin transmission in frog slowly adapting type 1 responses. Somatosens Mot Res 27:174–185CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J et al (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Prigg T, Goldreich D, Carvell GE, Simons DJ (2002) Texture discrimination and unit recordings in the rat whisker/barrel system. Physiol Behav 77:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rao RD, Flynn PJ, Sloan JA, Wong GY, Novotny P et al (2008) Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled trial, N01C3. Cancer 112:2802–2808CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rao RD, Michalak JC, Sloan JA, Loprinzi CL, Soori GS et al (2007) Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 110:2110–2118CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sang CN, Gracely RH, Max MB, Bennett GJ (1996) Capsaicin-evoked mechanical allodynia and hyperalgesia cross nerve territories. Evidence for a central mechanism. Anesthesiology 85:491–496CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Senok SS, Baumann KI, Halata Z (1996) Selective phototoxic destruction of quinacrine-loaded Merkel cells is neither selective nor complete. Exp Brain Res 110:325–334CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Smith EM, Cohen JA, Pett MA, Beck SL (2010) The reliability and validity of a modified total neuropathy score-reduced and neuropathic pain severity items when used to measure chemotherapy-induced peripheral neuropathy in patients receiving taxanes and platinums. Cancer Nurs 33:173–183CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Smith EM, Pang H, Cirrincione C, Fleishman S, Paskett ED et al (2013) Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 309:1359–1367CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Smith KR Jr (1970) The ultrastructure of the human Haarscheibe and Merkel cell. J Invest Dermatol 54:150–159CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tachibana T, Endoh M, Fujiwara N, Nawa T (2005) Receptors and transporter for serotonin in Merkel cell-nerve endings in the rat sinus hair follicle. An immunohistochemical study. Arch Histol Cytol 68:19–28CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tachibana T, Nawa T (2002) Recent progress in studies on Merkel cell biology. Anat Sci Int 77:26–33CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tapper DN (1965) Stimulus-response relationships in the cutaneous slowly-adapting mechanoreceptor in hairy skin of the cat. Exp Neurol 13:364–385CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tofthagen C, McAllister RD, Visovsky C (2013) Peripheral neuropathy caused by Paclitaxel and docetaxel: an evaluation and comparison of symptoms. J Adv Pract Oncol 4:204–215PubMedPubMedCentralGoogle Scholar
  71. 71.
    Torebjork HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol 448:765–780CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Woo SH, Lumpkin EA, Patapoutian A (2015) Merkel cells and neurons keep in touch. Trends Cell Biol 25:74–81CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yamashita Y, Akaike N, Wakamori M, Ikeda I, Ogawa H (1992) Voltage-dependent currents in isolated single Merkel cells of rats. J Physiol 450:143–162CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y et al (2013) Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yoshimura M, Jessell T (1990) Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J Physiol 430:315–335CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zimmerman A, Bai L, Ginty DD (2014) The gentle touch receptors of mammalian skin. Science 346:950–954CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology and Perioperative Medicine, School of MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations