Quality Assessment for Pansharpening Based on Component Analysis

  • Liangyu Zhou
  • Xiaoyan LuoEmail author
  • Xiaofeng Shi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 875)


The quality assessment for pansharpening is important. Since most existing indexes evaluate the performance of entire fused image either from the spatial aspect or the spectral aspect individually, we introduce an pansharpening metric which separate the fused image into two components to evaluate spectral and spatial quality simultaneously. This can be achieved by pure pixels containing one material and mixed pixels with more than one materials in the multispectral (MS) image. The MS pure pixels can be utilized to evaluate the spectral quality, which are projected to the low-frequency regions in the panchromatic (PAN) image. In contrast, the MS mixed pixels corresponding to the PAN high-frequency regions can be utilized to evaluate the spatial quality. Finally, the pansharpening quality assessment is made by a weighted sum of common existing criteria on pure and mixed components, which generates a pure and mixed index (PM index). Experimental results, carried out on high-resolution GeoEye-1 and WV-2 datasets, demonstrate that the proposed quality assessment is made on fused images in a more comprehensive and objective manner.


Pansharpening Remote sensing Quality assessment Superpixels 


  1. 1.
    Thomas, C., Ranchin, T., Wald, L., Chanussot, J.: Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 46(5), 1301–1312 (2008)CrossRefGoogle Scholar
  2. 2.
    Bovolo, F., Bruzzone, L., Capobianco, L., Garzelli, A., Marchesi, S., Nencini, F.: Analysis of the effects of pansharpening in change detection on VHR images. IEEE Geosci. Remote Sens. Lett. 7(1), 53–57 (2010)CrossRefGoogle Scholar
  3. 3.
    Gilbertson, J.K., Kemp, J., Van Niekerk, A.: Effect of PAN-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 134, 151–159 (2017)CrossRefGoogle Scholar
  4. 4.
    Duran, J., Buades, A., Coll, B., Sbert, C., Blanchet, G.: A survey of pansharpening methods with a new band-decoupled variational model. ISPRS J. Photogram. Remote Sens. 125, 78–105 (2017)CrossRefGoogle Scholar
  5. 5.
    Vivone, G., et al.: A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 53(5), 2565–2586 (2015)CrossRefGoogle Scholar
  6. 6.
    Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., Selva, M.: Twenty-five years of pansharpening: a critical review and new developments. In: Chen, C.-H. (ed.) Signal and Image Processing for Remote Sensing, 2nd edn., pp. 533–548. CRC Press, Boca Raton, FL, USA (2012)Google Scholar
  7. 7.
    Li, S., Li, Z., Gong, J.: Multivariate statistical analysis of measures for assessing the quality of image fusion. Int. J. Image Data Fus. 1(1), 47–66 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wald, L.: Data Fusion. Definitions and Architectures-Fusion of Images of Different Spatial Resolutions. Presses des MINES, Paris (2002)Google Scholar
  9. 9.
    Kruse, F.A., et al.: The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44(2), 145–163 (1993)CrossRefGoogle Scholar
  10. 10.
    Vijayaraj, V., O’Hara, C.G., Younan, N.H.: Quantitative analysis of PANsharpened images. Opt. Eng. 45(4), 046202 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  12. 12.
    Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., Selva, M.: Multispectral and PANchromatic data fusion assessment without reference. Photogram. Eng. Remote Sens. 74(2), 193–200 (2008)CrossRefGoogle Scholar
  13. 13.
    Liu, M.-Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: Proceedings IEEE Conference Vision and Pattern Recognition, pp. 2097–2104 (2011)Google Scholar
  14. 14.
    Chavez Jr., P.S., Sides, S.C., Anderson, J.A.: Comparison of three different methods to merge multiresolution and multispectral data: landsat TM and SPOT PANchromatic. Photogramm. Eng. Remote Sens. 57(3), 295–303 (1991)Google Scholar
  15. 15.
    Tu, T.-M., Su, S.-C., Shyu, H.-C., Huang, P.S.: A new look at IHS-like image fusion methods. Inf. Fus. 2(3), 177–186 (2001)CrossRefGoogle Scholar
  16. 16.
    Gillespie, A.R., Kahle, A.B., Walker, R.E.: Color enhancement of highly correlated images—II. Channel ratio and “chromaticity” transform techniques. Remote Sens. Environ. 22(3), 343–365 (1987)CrossRefGoogle Scholar
  17. 17.
    Aiazzi, B., Baronti, S., Selva, M.: Improving component substitution pansharpening through multivariate regression of MS+PAN data. IEEE Trans. Geosci. Remote Sens. 45(10), 3230–3239 (2007)CrossRefGoogle Scholar
  18. 18.
    Wald, L., Ranchin, T.: Comment: Liu ‘Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details’. Int. J. Remote Sens. 23(3), 593–597 (2002)CrossRefGoogle Scholar
  19. 19.
    Vivone, G., Restaino, R., Mura, M.D., Licciardi, G., Chanussot, J.: Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Geosci. Remote Sens. Lett. 11(5), 930–934 (2014)CrossRefGoogle Scholar
  20. 20.
    Otazu, X., González-Audícana, M., Fors, O., Núñez, J.: Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 43(10), 2376–2385 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Image Processing Center, School of AstronauticsBeihang UniversityBeijingChina
  2. 2.School of Electronic and Information EngineeringBeihang UniversityBeijingChina

Personalised recommendations