Advertisement

Adaptively Learning Background-Aware Correlation Filter for Visual Tracking

  • Zichun Zhang
  • Xinyan Liang
  • Chenglong Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 875)

Abstract

Correlation filter (CF) trackers have received more and more attention due to their excellent performance while maintaining high frame rates. However, the limited context information might limit the performance of CF trackers as the presence of background effects in or around target bounding box will corrupt CF learning. In this paper, toward improving background-aware CF trackers, we propose a general algorithm that adaptively incorporates background contexts in CF learning to suppress the distractors effectively. Comparing with existing background-aware CF trackers, our approach can adaptively explore background distractors by employing their correlations to the target object which makes our tracker more effective and efficient. Experimental results on large-scale benchmark dataset demonstrate the effectiveness and efficiency of the proposed approach against recent CF trackers.

References

  1. 1.
    Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.: Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)Google Scholar
  2. 2.
    Bibi, A., Ghanem, B.: Multi-template scale-adaptive kernelized correlation filters. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2015)Google Scholar
  3. 3.
    Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  4. 4.
    Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017)Google Scholar
  5. 5.
    Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, Nottingham, 1–5 Sept 2014Google Scholar
  6. 6.
    Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision (2015)Google Scholar
  7. 7.
    Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46454-1_29CrossRefGoogle Scholar
  8. 8.
    Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, 24–27 June 2014Google Scholar
  9. 9.
    Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  10. 10.
    Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017)Google Scholar
  11. 11.
    Galoogahi, H.K., Sim, T., Lucey, S.: Correlation filters with limited boundaries. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  12. 12.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: European conference on computer vision (2012)Google Scholar
  13. 13.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16181-5_18CrossRefGoogle Scholar
  15. 15.
    Lukezic, A., Vojir, T., Cehovin, L., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017)Google Scholar
  16. 16.
    Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision (2015)Google Scholar
  17. 17.
    Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  18. 18.
    Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)CrossRefGoogle Scholar
  19. 19.
    Xiao, J., Qiao, L., Stolkin, R., Leonardis, A.: Distractor-supported single target tracking in extremely cluttered scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 121–136. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_8CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyAnhui UniversityHefeiChina

Personalised recommendations