Advertisement

A Novel System for Fingerprint Orientation Estimation

  • Zhenshen Qu
  • Junyu Liu
  • Yang Liu
  • Qiuyu Guan
  • Ruikun Li
  • Yuxin Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 875)

Abstract

Orientation field extraction is a basic and essential task in an Automated Fingerprint Identification System (AFIS). Previous works failed when dealing with latent images due to the complicate background and strong noise. In this paper, an algorithm system specific for fingerprint orientation extraction is proposed, combining the domain and contexture information. Our system consists of three parts, preprocessing, foreground acquisition and a fully convolutional DNN. Preprocessing decrease the strength of noise in input latent fingerprints, making higher quality inputs for foreground acquisition and DNN. Foreground masks are necessary for eliminating effect of background on orientation extraction. DNN makes use of the foreground information and preprocessed input to produce higher quality outputs. Testing results on our dataset shows that proposed method overperforms state-of-the-art algorithms in accuracy after training with the same image set and weak labels, and groundtruth labels will lead to better results.

Keywords

Orientation field Fingerprint Fully convolutional DNN 

Notes

Acknowledgement

We would like to thank Beijing Hisign Technology Co., Ltd. and Cross-strait Tsinghua Research Institute for providing the resource and support to us.

References

  1. 1.
    Jain, A.K., Feng, J., Nandakumar, K.: Fingerprint matching. Computer 43(2), 36–44 (2010)CrossRefGoogle Scholar
  2. 2.
    Conti, V., et al.: Fast fingerprints classification only using the directional image. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS (LNAI), vol. 4692, pp. 34–41. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74819-9_5CrossRefGoogle Scholar
  3. 3.
    Jiang, X., Liu, M., Kot, A.C.: Fingerprint retrieval for identification. IEEE Trans. Inf. Forensics Secur. 1(4), 532–542 (2006)CrossRefGoogle Scholar
  4. 4.
    Cappelli, R., Lumini, A., Maio, D., et al.: Fingerprint classification by directional image partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 402–421 (1999)CrossRefGoogle Scholar
  5. 5.
    Bazen, A.M., Gerez, S.H.: Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 905–919 (2002)CrossRefGoogle Scholar
  6. 6.
    Zhang, L.: Extraction of direction features in fingerprint image. Appl. Mech. Mater. 518, 316–319 (2014)CrossRefGoogle Scholar
  7. 7.
    Sherlock, B.G., Monro, D.M.: A model for interpreting fingerprint topology. Pattern Recogn. 26(7), 1047–1055 (1993)CrossRefGoogle Scholar
  8. 8.
    Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vis. Graph. Image Process. 37(3), 362–385 (1987)CrossRefGoogle Scholar
  9. 9.
    Mei, Y., Sun, H., Xia, D.: A gradient-based combined method for the computation of fingerprints’ orientation field. Image Vis. Comput. 27(8), 1169–1177 (2009)CrossRefGoogle Scholar
  10. 10.
    Khan, M.A.U., Ullah, K., Khan, A., et al.: Robust multi-scale orientation estimation: directional filter bank based approach. Appl. Math. Comput. 242, 814–824 (2014)MATHGoogle Scholar
  11. 11.
    Jin, C., Kim, H.: Pixel-level singular point detection from multi-scale Gaussian filtered orientation field. Pattern Recogn. 43(11), 3879–3890 (2010)CrossRefGoogle Scholar
  12. 12.
    Gupta, P., Gupta, P.: Fingerprint orientation modeling using symmetric filters. In: Applications of Computer Vision, pp. 663–669. IEEE (2015)Google Scholar
  13. 13.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)Google Scholar
  14. 14.
    Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788. IEEE Computer Society (2016)Google Scholar
  15. 15.
    Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  16. 16.
    Cao, K., Jain, A.K.: Latent orientation field estimation via convolutional neural network. In: International Conference on Biometrics, pp. 349–356. IEEE (2015)Google Scholar
  17. 17.
    Tang, Y., Gao, F., Feng, J., et al.: FingerNet: an unified deep network for fingerprint minutiae extraction (2017)Google Scholar
  18. 18.
    Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)Google Scholar
  19. 19.
    Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2001)MathSciNetMATHGoogle Scholar
  20. 20.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)Google Scholar
  21. 21.
    Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. SMC 9(1), 62–66 (1979)MathSciNetGoogle Scholar
  22. 22.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2015)Google Scholar
  23. 23.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640 (2014)CrossRefGoogle Scholar
  24. 24.
    Schuch, P., Schulz, S.-D., Busch, C.: ConvNet regression for fingerprint orientations. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10269, pp. 325–336. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59126-1_27CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Zhenshen Qu
    • 1
  • Junyu Liu
    • 1
  • Yang Liu
    • 1
  • Qiuyu Guan
    • 1
  • Ruikun Li
    • 1
  • Yuxin Zhang
    • 2
  1. 1.Department of Control Science and EngineeringHITHarbinChina
  2. 2.Cross-Strait Tsinghua Research InstituteBeijingChina

Personalised recommendations