Advertisement

Current Approaches of Anti-inflammatory-Dependent Antiaging Strategies

  • Hafize Uzun
Chapter

Abstract

Inflammation plays a role in the etiology of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, which have the highest mortality rates. It has been argued that the lifetime of macromolecular damage caused by chronic inflammation can be the cause of aging process. There are studies indicating that aging is also closely related with low-grade chronic inflammation, defined as sterile inflammation. Another definition of sterile inflammation is pathogen-free inflammation resulting from various environmental conditions such as mechanical trauma, ischemia, stress, or ultraviolet radiation. The combined effects of inflammation on genome, epigenome, mitochondria, a variety of intracellular structures, and cellular membranes need to be defied for diverse areas of eventual antiaging interventions. These interventions include specific exercise programs, caloric restriction, anti-inflammatory diets and nutritional supplements, and specific cell-based therapies including platelet-rich plasma (PRP) and stem cells as both mitigating agents in the aging process. Inflammation suppression is one of the most important factors for healthy longevity. This chapter will focus on the current approaches of anti-inflammatory-dependent antiaging strategies.

Keywords

Antiaging strategies Low-grade inflammation Healthy longevity Anti-inflammatory diet Stem cells 

References

  1. Abbatecola AM, Ferrucci L, Grella R, Bandinelli S, Bonafè M, Barbieri M, Corsi AM, Lauretani F, Franceschi C, Paolisso G (2004) Diverse effect of inflammatory markers on insulin resistance and insulin-resistance syndrome in the elderly. J Am Geriatr Soc 52(3):399–404CrossRefGoogle Scholar
  2. Agüero-Torres H, Viitanen M, Fratiglioni L, Louhija J (2001) The effect of low-dose daily aspirin intake on survival in the Finnish centenarians cohort. J Am Geriatr Soc 49(11):1578–1580CrossRefGoogle Scholar
  3. Alvers AL, Wood MS, Hu D, Kaywell AC, Dunn J, William A, Aris JP (2009) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5(6):847–849CrossRefGoogle Scholar
  4. Ansar W, Ghosh S (2013) C-reactive protein and the biology of disease. Immunol Res 56(1):131–142CrossRefGoogle Scholar
  5. Arranz L, De Castro NM, Baeza I, De la Fuente M (2010) Differential expression of toll-like receptor 2 and 4 on peritoneal leukocyte populations from long-lived and non-selected old female mice. Biogerontology 11(4):475–482.  https://doi.org/10.1007/s10522-010-9270-y CrossRefPubMedGoogle Scholar
  6. Atzmon G, Pollin TI, Crandall J, Tanner K, Schechter CB, Scherer PE, Rincon M, Siegel G, Katz M, Lipton RB, Shuldiner AR, Barzilai N (2008) Adiponectin levels and genotype: a potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci 63(5):447–453CrossRefGoogle Scholar
  7. Ayyadevara S, Bharill P, Dandapat A, Hu C, Khaidakov M, Mitra S, Shmookler Reis RJ, Mehta JL (2013) Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans. Antioxid Redox Signal 18(5):481–490CrossRefGoogle Scholar
  8. Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P (2014) Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 136:101–115CrossRefGoogle Scholar
  9. Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14(2):312–318CrossRefGoogle Scholar
  10. Bauer ME, Wieck A, Petersen LE, Baptista TS (2015) Neuroendocrine and viral correlates of premature immunosenescence. Ann N Y Acad Sci 1351:11–21.  https://doi.org/10.1111/nyas.12786 CrossRefPubMedGoogle Scholar
  11. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581.  https://doi.org/10.1152/physrev.1998.78.2.547 CrossRefPubMedGoogle Scholar
  12. Bernadotte A, Mikhelson VM, Spivak IM (2016) Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY) 8(1):3CrossRefGoogle Scholar
  13. Bhattacharya A, Leonard S, Tardif S, Buffenstein R, Fischer KE, Richardson A, Austad SN, Chaudhuri AR (2011) Attenuation of liver insoluble protein carbonyls: indicator of a longevity determinant? Aging Cell 10(4):720–723.  https://doi.org/10.1111/j.1474-9726.2011.00712.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bruunsgaard H, Pedersen AN, Schroll M, Skinhøj P, Pedersen B (1999) Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans. Clin Exp Immunol 118(2):235CrossRefGoogle Scholar
  15. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM (2006) Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79(3):469–480.  https://doi.org/10.1086/507132 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bubenik G, Konturek S (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62(1):13PubMedGoogle Scholar
  17. Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, Rizzo C, Colonna-Romano G, Lio D, Carlo D (2010) Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des 16(6):609–618CrossRefGoogle Scholar
  18. Cheng Y, Feng Z, Zhang QZ, Zhang JT (2006) Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 27(2):129–139CrossRefGoogle Scholar
  19. Danilov A, Shaposhnikov M, Shevchenko O, Zemskaya N, Zhavoronkov A, Moskalev A (2015) Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity. Oncotarget 6(23):19428–19444.  https://doi.org/10.18632/oncotarget.5118 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Effros RM (2011) Alpha aminobutyric acid, an alternative measure of hepatic injury in sepsis? Transl Res 158(6):326–327CrossRefGoogle Scholar
  21. Esser N, Paquot N, Scheen AJ (2015a) Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24(3):283–307.  https://doi.org/10.1517/13543784.2015.974804 CrossRefPubMedGoogle Scholar
  22. Esser N, Paquot N, Scheen AJ (2015b) Inflammatory markers and cardiometabolic diseases. Acta Clin Belg 70(3):193–199.  https://doi.org/10.1179/2295333715Y.0000000004 CrossRefPubMedGoogle Scholar
  23. Forsey R, Thompson J, Ernerudh J, Hurst T, Strindhall J, Johansson B, Nilsson B-O, Wikby A (2003) Plasma cytokine profiles in elderly humans. Mech Ageing Dev 124(4):487–493CrossRefGoogle Scholar
  24. Fulop T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271.  https://doi.org/10.3389/fimmu.2013.00271 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A, Pawelec G (2010) Aging, frailty and age-related diseases. Biogerontology 11(5):547–563.  https://doi.org/10.1007/s10522-010-9287-2 CrossRefPubMedGoogle Scholar
  26. Fulop T, McElhaney J, Pawelec G, Cohen AA, Morais JA, Dupuis G, Baehl S, Camous X, Witkowski JM, Larbi A (2015) Frailty, inflammation and Immunosenescence. Interdiscip Top Gerontol Geriatr 41:26–40.  https://doi.org/10.1159/000381134 CrossRefPubMedGoogle Scholar
  27. Fusco D, Colloca G, Lo Monaco MR, Cesari M (2007) Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2(3):377–387PubMedPubMedCentralGoogle Scholar
  28. Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Moran M, Emanuele E, Joyner MJ, Lucia A (2015) Exercise attenuates the major hallmarks of aging. Rejuvenation Res 18(1):57–89.  https://doi.org/10.1089/rej.2014.1623 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Geng YQ, Li TT, Liu XY, Li ZH, Fu YC (2011) SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. J Cell Biochem 112(12):3755–3761CrossRefGoogle Scholar
  30. Ghosh AK, Garg SK, Mau T, O’Brien M, Liu J, Yung R (2014) Elevated endoplasmic reticulum stress response contributes to adipose tissue inflammation in aging. J Gerontol Ser A 70(11):1320–1329CrossRefGoogle Scholar
  31. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333(6046):1109–1112.  https://doi.org/10.1126/science.1201940 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gu Y, Luchsinger JA, Stern Y, Scarmeas N (2010) Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. J Alzheimers Dis 22(2):483–492.  https://doi.org/10.3233/JAD-2010-100897 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Harley CB, Liu W, Blasco M, Vera E, Andrews WH, Briggs LA, Raffaele JM (2011) A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 14(1):45–56.  https://doi.org/10.1089/rej.2010.1085 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang J, Xie Y, Sun X, Zeh HJ, Kang R, Lotze MT, Tang D (2015) DAMPs, ageing, and cancer: the ‘DAMP Hypothesis’. Ageing Res Rev 24(Pt A):3–16.  https://doi.org/10.1016/j.arr.2014.10.004 CrossRefPubMedGoogle Scholar
  35. Kahan B (2004) Sirolimus: a ten-year perspective. In: Transplantation proceedings, vol 1. Elsevier, pp 71–75Google Scholar
  36. Lawrence P, Ceccoli J (2017) Advances in the application and impact of MicroRNAs as therapies for skin disease. BioDrugs 31(5):423–438CrossRefGoogle Scholar
  37. López-Lluch G, Navas P (2016) Calorie restriction as an intervention in ageing. J Physiol 594(8):2043–2060CrossRefGoogle Scholar
  38. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13(2):106–118CrossRefGoogle Scholar
  39. Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP (2010) MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-κB signaling. Am J Physiol-Gastrointest Liver Physiol 298(4):G535–G541CrossRefGoogle Scholar
  40. Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9(10):692CrossRefGoogle Scholar
  41. Meydani SN, Barklund MP, Liu S, Meydani M, Miller RA, Cannon JG, Morrow FD, Rocklin R, Blumberg JB (1990) Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr 52(3):557–563CrossRefGoogle Scholar
  42. Moro-García MA, Fernández-García B, Echeverría A, Rodríguez-Alonso M, Suárez-García FM, Solano-Jaurrieta JJ, López-Larrea C, Alonso-Arias R (2014) Frequent participation in high volume exercise throughout life is associated with a more differentiated adaptive immune response. Brain Behav Immun 39:61–74CrossRefGoogle Scholar
  43. Naito M, Fujikura J, Ebihara K, Miyanaga F, Yokoi H, Kusakabe T, Yamamoto Y, Son C, Mukoyama M, Hosoda K, Nakao K (2011) Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice. Diabetes 60(9):2265–2273.  https://doi.org/10.2337/db10-1795 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafe M (2015) DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 6(34):35509–35521.  https://doi.org/10.18632/oncotarget.5899 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Palmeri M, Misiano G, Malaguarnera M, Forte GI, Vaccarino L, Milano S, Scola L, Caruso C, Motta M, Maugeri D (2012) Cytokine serum profile in a group of Sicilian nonagenarians. J Immunoass Immunochem 33(1):82–90CrossRefGoogle Scholar
  46. Panickar KS, Jewell DE (2015) The beneficial role of anti-inflammatory dietary ingredients in attenuating markers of chronic low-grade inflammation in aging. Horm Mol Biol Clin Invest 23(2):59–70Google Scholar
  47. Park S-K, Page GP, Kim K, Allison DB, Meydani M, Weindruch R, Prolla TA (2008) α-and γ-Tocopherol prevent age-related transcriptional alterations in the heart and brain of mice. J Nutr 138(6):1010–1018CrossRefGoogle Scholar
  48. Park S, Yang MJ, Ha SN, Lee JS (2014) Effective anti-aging strategies in an era of super-aging. J Menopausal Med 20(3):85–89.  https://doi.org/10.6118/jmm.2014.20.3.85 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Picca A, Pesce V, Lezza AMS (2017) Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 12:1887–1902.  https://doi.org/10.2147/CIA.S126458 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Raguraman V, Subramaniam JR (2016) Withania somnifera root extract enhances telomerase activity in the human hela cell line. Adv Biosci Biotechnol 7(04):199CrossRefGoogle Scholar
  51. Rahman I, Bagchi D (2013) Inflammation, advancing age and nutrition: research and clinical interventions. Academic, LondonGoogle Scholar
  52. Rahnamaeian M, Vilcinskas A (2015) Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl Microbiol Biotechnol 99(21):8847–8855CrossRefGoogle Scholar
  53. Redondo S, Santos-Gallego CG, Ganado P, García M, Rico L, Del Rio M, Tejerina T (2003) Acetylsalicylic acid inhibits cell proliferation by involving transforming growth factor-β. Circulation 107(4):626–629CrossRefGoogle Scholar
  54. Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342.  https://doi.org/10.1146/annurev-immunol-030409-101311 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Roubenoff R, Parise H, Payette HA, Abad LW, D’Agostino R, Jacques PF, Wilson PW, Dinarello CA, Harris TB (2003) Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am J Med 115(6):429–435CrossRefGoogle Scholar
  56. Salminen A, Kaarniranta K (2009) NF-kappaB signaling in the aging process. J Clin Immunol 29(4):397–405.  https://doi.org/10.1007/s10875-009-9296-6 CrossRefPubMedGoogle Scholar
  57. Schumacher B, Garinis GA, Hoeijmakers JH (2008) Age to survive: DNA damage and aging. Trends Genet 24(2):77–85CrossRefGoogle Scholar
  58. Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52(3):539–555.  https://doi.org/10.1016/j.freeradbiomed.2011.10.445 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7(5):641–650CrossRefGoogle Scholar
  60. Tajes M, Gutierrez-Cuesta J, Ortuño-Sahagun D, Camins A, Pallàs M (2009) Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J Pineal Res 47(3):228–237CrossRefGoogle Scholar
  61. Tung BT, Rodriguez-Bies E, Thanh HN, Le-Thi-Thu H, Navas P, Sanchez VM, López-Lluch G (2015) Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice. Aging Clin Exp Res 27(6):775–783CrossRefGoogle Scholar
  62. Varadhan R, Yao W, Matteini A, Beamer BA, Xue Q-l, Yang H, Manwani B, Reiner A, Jenny N, Parekh N (2013) Simple biologically informed inflammatory index of two serum cytokines predicts 10 year all-cause mortality in older adults. J Gerontol Ser A: Biomed Sci Med Sci 69(2):165–173CrossRefGoogle Scholar
  63. Wagner K-H, Cameron-Smith D, Wessner B, Franzke B (2016) Biomarkers of aging: from function to molecular biology. Nutrients 8(6):338CrossRefGoogle Scholar
  64. Wassel CL, Barrett-Connor E, Laughlin GA (2010) Association of circulating C-reactive protein and interleukin-6 with longevity into the 80s and 90s: the Rancho Bernardo Study. J Clin Endocrinol Metabol 95(10):4748–4755CrossRefGoogle Scholar
  65. Webb AE, Brunet A (2014) FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci 39(4):159–169CrossRefGoogle Scholar
  66. Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood) 227(9):671–682CrossRefGoogle Scholar
  67. Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J 52(1):1–11CrossRefGoogle Scholar
  68. Yoon AP, Yoon CP, Daane S (2015) Aging and longevity science: where are we in 2015? PeerJ PrePrintsGoogle Scholar
  69. Yuan Y, DiCiaccio B, Li Y, Elshikha AS, Titov D, Brenner B, Seifer L, Pan H, Karic N, Akbar MA, Lu Y, Song S, Zhou L (2018) Anti-inflammaging effects of human alpha-1 antitrypsin. Aging Cell 17(1). Epub 2017 Oct 17CrossRefGoogle Scholar
  70. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658CrossRefGoogle Scholar
  71. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15(3):428–435CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hafize Uzun
    • 1
  1. 1.Department of Medical Biochemistry, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations