Advertisement

Non-coding RNAs as Potential Targets for Treatment and Early Diagnosis of Age-Associated Neurodegenerative Diseases

  • Shamsuzzama
  • Lalit Kumar
  • Rizwanul Haque
  • Aamir NazirEmail author
Chapter

Abstract

Neurodegenerative diseases (NDs) are debilitating disorders affecting a significant portion of the world’s rapidly growing aging population. Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington disease (HD), and amyotrophic lateral sclerosis (ALS) are the most common NDs. These diseases constitute a group of disorders, wherein aggregation of misfolded proteins, mitochondrial function, disruption of cellular signaling, and neuronal cell death occurs. The exact etiology is still unknown, and hence a complete cure to these diseases is yet to be found, partly because these diseases are multifactorial in nature and a single factor responsible for cause and progression of these ailments is not known to exist. Recent studies indicate that non-coding RNAs (particularly miRNAs and circRNAs) are possibly involved in progression of various neurodegenerative diseases. Precisely, miRNAs are highly expressed in the neurons of central nervous system where they play pivotal role during neuronal differentiation and neuronal plasticity. The nature of miRNAs to regulate hundreds of genes, thereby multiple pathways simultaneously, makes it possible that any common miRNA may trigger multiple pathways associated with NDs. The ability of circRNAs to regulate the function of miRNAs by sponging has emerged as interesting possibility, thus being explored as biomarker and as potential novel target for therapeutic intervention against these ailments. Here, we provide an overview on the potential target of non-coding RNAs (miRNAs and circRNAs) in various NDs.

Keywords

Non-coding RNA Neurodegenerative disease Aging 

References

  1. Adlakha YK, Saini N (2014) Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 13:33CrossRefGoogle Scholar
  2. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345CrossRefGoogle Scholar
  3. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355CrossRefGoogle Scholar
  4. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66CrossRefGoogle Scholar
  5. Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027–7030CrossRefGoogle Scholar
  6. Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM (2006) MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 24:157–163CrossRefGoogle Scholar
  7. Brandt R, Leschik J (2004) Functional interactions of tau and their relevance for Alzheimer’s disease. Curr Alzheimer Res 1:255–269CrossRefGoogle Scholar
  8. Carrieri C, Forrest AR, Santoro C, Persichetti F, Carninci P, Zucchelli S, Gustincich S (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9:114CrossRefGoogle Scholar
  9. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427CrossRefGoogle Scholar
  10. Coppede F (2012) Genetics and epigenetics of Parkinson’s disease. Sci World J 2012:489830CrossRefGoogle Scholar
  11. Cortes-Lopez M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, Miura P (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19:8CrossRefGoogle Scholar
  12. Croese T, Furlan R (2017) Extracellular vesicles in neurodegenerative diseases. Mol Asp Med 60:52–61CrossRefGoogle Scholar
  13. Dikiy I, Eliezer D (2012) Folding and misfolding of alpha-synuclein on membranes. Biochim Biophys Acta 1818:1013–1018CrossRefGoogle Scholar
  14. Dimmeler S, Nicotera P (2013) MicroRNAs in age-related diseases. EMBO Mol Med 5:180–190CrossRefGoogle Scholar
  15. Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285:12726–12734CrossRefGoogle Scholar
  16. Femminella GD, Ferrara N, Rengo G (2015) The emerging role of microRNAs in Alzheimer’s disease. Front Physiol 6:40CrossRefGoogle Scholar
  17. Gehrke S, Imai Y, Sokol N, Lu B (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466:637–641CrossRefGoogle Scholar
  18. Gourie-Devi M (2014) Epidemiology of neurological disorders in India: review of background, prevalence and incidence of epilepsy, stroke, Parkinson’s disease and tremors. Neurol India 62:588–598CrossRefGoogle Scholar
  19. Harraz MM, Dawson TM, Dawson VL (2011) MicroRNAs in Parkinson’s disease. J Chem Neuroanat 42:127–130CrossRefGoogle Scholar
  20. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105:6415–6420CrossRefGoogle Scholar
  21. Hebert SS, Sergeant N, Buee L (2012) MicroRNAs and the regulation of tau metabolism. Int J Alzheimers Dis 2012:406561PubMedPubMedCentralGoogle Scholar
  22. Hirano A (1994) Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 20:3–11CrossRefGoogle Scholar
  23. Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH (2016) microRNA profiles in Parkinson’s disease prefrontal cortex. Front Aging Neurosci 8:36CrossRefGoogle Scholar
  24. http://www.parkinson.org/Understanding-Parkinsons/Causes-and-Statistics/StatisticsGoogle Scholar
  25. https://www.alz.org/documents_custom/2016-facts-and-figures.pdfsGoogle Scholar
  26. Johnson R, Buckley NJ (2009) Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. Neuromol Med 11:183–199CrossRefGoogle Scholar
  27. Johnson R, Teh CH, Jia H, Vanisri RR, Pandey T, Lu ZH, Buckley NJ, Stanton LW, Lipovich L (2009) Regulation of neural macroRNAs by the transcriptional repressor REST. RNA 15:85–96CrossRefGoogle Scholar
  28. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052–13057CrossRefGoogle Scholar
  29. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017CrossRefGoogle Scholar
  30. Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22:4127–4135CrossRefGoogle Scholar
  31. Kumar L, Shamsuzzama, Haque R, Baghel T, Nazir A (2016) Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol Neurobiol 54:7224–7234CrossRefGoogle Scholar
  32. Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94CrossRefGoogle Scholar
  33. Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP (2012) MicroRNAs: molecular features and role in cancer. Front Biosci 17:2508–2540CrossRefGoogle Scholar
  34. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefGoogle Scholar
  35. Lees AJ (2007) Unresolved issues relating to the shaking palsy on the celebration of James Parkinson’s 250th birthday. Mov Disord Off J Mov Disord Soc 22(Suppl 17):S327–S334CrossRefGoogle Scholar
  36. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166CrossRefGoogle Scholar
  37. Maes OC, An J, Sarojini H, Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129:534–541CrossRefGoogle Scholar
  38. Marcuzzo S, Kapetis D, Mantegazza R, Baggi F, Bonanno S, Barzago C, Cavalcante P, Kerlero de Rosbo N, Bernasconi P (2014) Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Exp Neurol 253:91–101CrossRefGoogle Scholar
  39. Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235CrossRefGoogle Scholar
  40. Massano J, Bhatia KP (2012) Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2:a008870CrossRefGoogle Scholar
  41. Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, Florio T, Dieci G, Cancedda R, Pagano A (2011) 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 41:308–317CrossRefGoogle Scholar
  42. Meza-Sosa KF, Valle-Garcia D, Pedraza-Alva G, Perez-Martinez L (2012) Role of microRNAs in central nervous system development and pathology. J Neurosci Res 90:1–12CrossRefGoogle Scholar
  43. Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078CrossRefGoogle Scholar
  44. Modarresi F, Faghihi MA, Patel NS, Sahagan BG, Wahlestedt C, Lopez-Toledano MA (2011) Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int J Alzheimers Dis 2011:929042PubMedPubMedCentralGoogle Scholar
  45. Mus E, Hof PR, Tiedge H (2007) Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 104:10679–10684CrossRefGoogle Scholar
  46. Nolan K, Mitchem MR, Jimenez-Mateos EM, Henshall DC, Concannon CG, Prehn JH (2014) Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci MN 53:231–241CrossRefGoogle Scholar
  47. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci Off J Soc Neurosci 28:14341–14346CrossRefGoogle Scholar
  48. Parisi C, Arisi I, D’Ambrosi N, Storti AE, Brandi R, D’Onofrio M, Volonte C (2013) Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis 4:e959CrossRefGoogle Scholar
  49. Pereira P, Queiroz JA, Figueiras A, Sousa F (2017) Current progress on microRNAs-based therapeutics in neurodegenerative diseases, Wiley interdisciplinary reviews. RNA 8.  https://doi.org/10.1002/wrna.1409 CrossRefGoogle Scholar
  50. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefGoogle Scholar
  51. Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Leger B, Ushida T, Cartoni R, Wadley GD, Hespel P, Kralli A, Soraru G, Angelini C, Akimoto T (2013) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 49:107–117CrossRefGoogle Scholar
  52. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885CrossRefGoogle Scholar
  53. Schonrock N, Matamales M, Ittner LM, Gotz J (2012) MicroRNA networks surrounding APP and amyloid-beta metabolism – implications for Alzheimer’s disease. Exp Neurol 235:447–454CrossRefGoogle Scholar
  54. Shamsuzzama, Kumar L, Nazir A (2017) Modulation of alpha-synuclein expression and associated effects by microRNA Let-7 in Transgenic C. elegans. Front Mol Neurosci 10:328CrossRefGoogle Scholar
  55. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669CrossRefGoogle Scholar
  56. Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M (2011) Role of p53 serine 46 in p53 target gene regulation. PLoS One 6:e17574CrossRefGoogle Scholar
  57. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10:e1003517CrossRefGoogle Scholar
  58. Toivonen JM, Manzano R, Olivan S, Zaragoza P, Garcia-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 9:e89065CrossRefGoogle Scholar
  59. Valdez G, Heyer MP, Feng G, Sanes JR (2014) The role of muscle microRNAs in repairing the neuromuscular junction. PLoS One 9:e93140CrossRefGoogle Scholar
  60. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008a) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci Off J Soc Neurosci 28:1213–1223CrossRefGoogle Scholar
  61. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008b) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289CrossRefGoogle Scholar
  62. Wang LL, Huang Y, Wang G, Chen SD (2012) The potential role of microRNA-146 in Alzheimer’s disease: biomarker or therapeutic target? Med Hypotheses 78:398–401CrossRefGoogle Scholar
  63. Weinberg MS, Wood MJ (2009) Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 18:R27–R39CrossRefGoogle Scholar
  64. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9:1966–1980CrossRefGoogle Scholar
  65. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70:5923–5930CrossRefGoogle Scholar
  66. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862CrossRefGoogle Scholar
  67. Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326:1549–1554CrossRefGoogle Scholar
  68. Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT (2010) MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS One 5:e15546CrossRefGoogle Scholar
  69. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610CrossRefGoogle Scholar
  70. Zhang Z, Pinto AM, Wan L, Wang W, Berg MG, Oliva I, Singh LN, Dengler C, Wei Z, Dreyfuss G (2013) Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A 110:19348–19353CrossRefGoogle Scholar
  71. Zhou F, Guan Y, Chen Y, Zhang C, Yu L, Gao H, Du H, Liu B, Wang X (2013) miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice. Int J Clin Exp Pathol 6:1826–1838PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shamsuzzama
    • 1
  • Lalit Kumar
    • 1
  • Rizwanul Haque
    • 1
  • Aamir Nazir
    • 1
    Email author
  1. 1.Division of Toxicology and Experimental MedicineCSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations