Advertisement

Role of Phytochemicals in Eliciting Longevity Genes

  • Kalaiselvi Periandavan
  • Prema Velusamy
Chapter

Abstract

Phytochemicals are diverse secondary metabolites derived from plants, and it has been proven that phytochemicals can extend longevity by evolutionarily conserved mechanisms. The positive impact of dietary phytochemicals on overall health and longevity has been studied extensively over the past decade. The emerging role of phytochemicals as an effector of metabolic and longevity signals offers new therapeutic perspectives. In this regard, we will discuss the role of phytochemicals in eliciting the longevity genes and also the various mechanisms involved. This review will give a broad outline of how different phytochemicals modulate signaling pathways that modulate the expression of specific set of genes. This review will also highlight the most exciting perspective for research in the future in this rapidly developing field of signaling pathways which include the genes encoding heat shock protein, genes responsible for the antioxidant response, genes involved in metabolism, etc. and are crucial for the phytochemicals to elicit longevity.

Despite various beneficial biological functions, phytochemicals might have adverse side effects like carcinogenicity and genotoxicity at high doses or concentrations. Hence, the future research challenge is to determine the optimal dose range and to perform intervention studies in order to improve longevity.

Keywords

Aging Phytochemicals Longevity Oxidative stress 

References

  1. Aan GJ, Zainudin MS, Karim NA, Ngah WZ (2013) Effect of the tocotrienol-rich fraction on the lifespan and oxidative biomarkers in Caenorhabditis elegans under oxidative stress. Clinics (Sao Paulo) 68(5):599–604CrossRefGoogle Scholar
  2. Abbas S, Wink M (2009) Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med 75(3):216–221CrossRefGoogle Scholar
  3. Alexe G, Fuku N, Bilal E, Ueno H, Nishigaki Y, Fujita Y, Ito M, Arai Y, Hirose N, Bhanot G, Tanaka M (2007) Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Hum Genet 121:347–356CrossRefGoogle Scholar
  4. Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT (2012) Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci 67(4):395–405CrossRefGoogle Scholar
  5. Bakshi HA, Sam S, Feroz A, Ravesh Z, Shah GA, Sharma M (2009) Crocin from Kashmiri saffron (Crocus sativus) induces in vitro and in vivo xenograft growth inhibition of Dalton’s lymphoma (DLA) in mice. Asian Pac J Cancer Prev 10:887–890PubMedGoogle Scholar
  6. Bandyopadhyay D (2014) Farmer to pharmacist: curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer. Front Chem 2:113CrossRefGoogle Scholar
  7. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342CrossRefGoogle Scholar
  8. Belinha I, Amorim MA, Rodrigues P, de Freitas V, Moradas-Ferreira P, Mateus N, Costa V (2007) Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem 55(6):2446–2451CrossRefGoogle Scholar
  9. Brown OI, Allgar V, Wong KY (2016) Coffee reduces the risk of death after acute myocardial infarction: a meta-analysis. Coron Artery Dis 27(7):566–572CrossRefGoogle Scholar
  10. Caesar I, Jonson M, Nilsson KP, Thor S, Hammarström P (2012) Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic drosophila. PLoS One 7(2):e31424CrossRefGoogle Scholar
  11. Cai WJ, Huang JH, Zhang SQ, Wu B, Kapahi P, Zhang XM, Shen ZY (2011) Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS One 6(12):e28835CrossRefGoogle Scholar
  12. Charron CS, Dawson HD, Novotny JA (2016) Garlic influences gene expression in vivo and in vitro. J Nutr 146(2):444S–449SCrossRefGoogle Scholar
  13. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436–448CrossRefGoogle Scholar
  14. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB (2014) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129(6):643–659CrossRefGoogle Scholar
  15. Dostal V, Roberts CM, Link CD (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity. Genetics 186(3):857–866CrossRefGoogle Scholar
  16. Elavarasan J, Velusamy P, Ganesan T, Ramakrishnan SK, Rajasekaran D, Periandavan K (2012) Hesperidin-mediated expression of Nrf2 and upregulation of antioxidant status in senescent rat heart. J Pharm Pharmacol 64(10):1472–1482CrossRefGoogle Scholar
  17. Flurkey K, Astle CM, Harrison DE (2010) Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 65(12):1275–1284CrossRefGoogle Scholar
  18. Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161(1):106–118CrossRefGoogle Scholar
  19. Franco-Enzástiga Ú, Santana-Martínez RA, Silva-Islas CA, Barrera-Oviedo D, Chánez-Cárdenas ME, Maldonado PD (2017) Chronic administration of S-allylcysteine activates Nrf2 factor and enhances the activity of antioxidant enzymes in the striatum, frontal cortex and hippocampus. Neurochem Res 42(11):3041–3051CrossRefGoogle Scholar
  20. Grünz G, Haas K, Soukup S, Klingenspor M, Kulling SE, Daniel H, Spanier B (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev 133:1–10CrossRefGoogle Scholar
  21. Gupta S, Chauhan D, Mehla K, Sood P, Nair A (2010) An overview of nutraceuticals: current scenario. J Basic Clin Pharm 1(2):55–62PubMedPubMedCentralGoogle Scholar
  22. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11):7124–7128CrossRefGoogle Scholar
  23. Hayflick L (2000) The future of ageing. Nature 408(6809):267–269CrossRefGoogle Scholar
  24. Holliday R (1995) Understanding Ageing. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  25. Holliday R (2006) Aging is no longer an unsolved problem in biology. Ann N Y Acad Sci 1067:1–9CrossRefGoogle Scholar
  26. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196CrossRefGoogle Scholar
  27. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800CrossRefGoogle Scholar
  28. Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394(6694):694–697CrossRefGoogle Scholar
  29. Jeck WR, Siebold AP, Sharpless NE (2012) Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11(5):727–731.  https://doi.org/10.1111/j.1474-9726.2012.00871.x. Epub 2012 Aug 30. ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  30. Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES (2007) The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 10:157–172CrossRefGoogle Scholar
  31. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefGoogle Scholar
  32. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512.  https://doi.org/10.1038/nature08980. Review. Erratum in: Nature. 2010 Sep 30;467(7315):622CrossRefPubMedGoogle Scholar
  33. Kiaei M, Kipiani K, Petri S, Chen J, Calingasan NY, Beal MF (2005) Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis 2:246–254CrossRefGoogle Scholar
  34. Kim HK (2016) Protective effect of garlic on cellular senescence in UVB-exposed HaCaT human keratinocytes. Nutrients 8(8)CrossRefGoogle Scholar
  35. Koropatnick TA, Kimbell J, Chen R, Grove JS, Donlon TA, Masaki KH, Rodriguez BL, Willcox BJ, Yano K, Curb JD (2008) A prospective study of high-density lipoprotein cholesterol, cholesteryl ester transfer protein gene variants, and healthy aging in very old Japanese-american men. J Gerontol A Biol Sci Med Sci 63(11):1235–1240CrossRefGoogle Scholar
  36. Krishnan TR, Velusamy P, Srinivasan A, Ganesan T, Mangaiah S, Narasimhan K, Chakrapani LN, J T, Walter CE, Durairajan S, Nathakattur Saravanabavan S, Periandavan K (2014) EGCG mediated downregulation of NF-AT and macrophage infiltration in experimental hepatic steatosis. Exp Gerontol 57:96–103CrossRefGoogle Scholar
  37. Kwon ES, Narasimhan SD, Yen K, Tissenbaum HA (2010) A new DAF-16 isoform regulates longevity. Nature 466(7305):498–502CrossRefGoogle Scholar
  38. Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13(5):561–570CrossRefGoogle Scholar
  39. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487):2126–2128CrossRefGoogle Scholar
  40. Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L (2015) Interventions to slow aging in humans: are we ready? Aging Cell 14(4):497–510CrossRefGoogle Scholar
  41. Lublin A, Isoda F, Patel H, Yen K, Nguyen L, Hajje D, Schwartz M, Mobbs C (2011) FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on cbp and protect against proteotoxicity. PLoS One 6(11):e27762CrossRefGoogle Scholar
  42. Ma S, Yim SH, Lee SG, Kim EB, Lee SR, Chang KT, Buffenstein R, Lewis KN, Park TJ, Miller RA, Clish CB, Gladyshev VN (2015) Organization of the mammalian metabolome according to organ function, lineage specialization, and longevity. Cell Metab 22(2):332–343CrossRefGoogle Scholar
  43. Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, Javors MA, Li X, Nadon NL, Nelson JF, Pletcher S, Salmon AB, Sharp ZD, Van Roekel S, Winkleman L, Strong R (2014) Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13(3):468–477CrossRefGoogle Scholar
  44. Moriguchi T, Saito H, Nishiyama N (1997) Anti-ageing effect of aged garlic extract in the inbred brain atrophy mouse model. Clin Exp Pharmacol Physiol 24(3–4):235–242CrossRefGoogle Scholar
  45. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10CrossRefGoogle Scholar
  46. Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28(8):1303–1312CrossRefGoogle Scholar
  47. Murali G, Panneerselvam KS, Panneerselvam C (2008) Age-associated alterations of lipofuscin, membrane-bound ATPases and intracellular calcium in cortex, striatum and hippocampus of rat brain: protective role of glutathione monoester. Int J Dev Neurosci 26(2):211–215CrossRefGoogle Scholar
  48. Murphy MP, Partridge L (2008) Toward a control theory analysis of aging. Annu Rev Biochem 77:777–798CrossRefGoogle Scholar
  49. Newman AB, Murabito JM (2013) The epidemiology of longevity and exceptional survival. Epidemiol Rev 35:181–197CrossRefGoogle Scholar
  50. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  51. Park SY, Freedman ND, Haiman CA, Le Marchand L, Wilkens LR, Setiawan VW (2017) Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann Intern Med 167(4):228–235CrossRefGoogle Scholar
  52. Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC, Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E, Study of Osteoporotic Fractures (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8(4):460–472CrossRefGoogle Scholar
  53. Pietsch K, Saul N, Menzel R, Stürzenbaum SR, Steinberg CE (2009) Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10(5):565–578CrossRefGoogle Scholar
  54. Powolny AA, Singh SV (2008) Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett 269(2):305–314CrossRefGoogle Scholar
  55. Queen BL, Tollefsbol TO (2010) Polyphenols and aging. Curr Aging Sci 3(1):34–42CrossRefGoogle Scholar
  56. Rascón B, Hubbard BP, Sinclair DA, Amdam GV (2012) The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany NY) 4(7):499–508CrossRefGoogle Scholar
  57. Rice-Evans C (1999) Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med 220(4):262–266CrossRefGoogle Scholar
  58. Ried K, Frank OR, Stocks NP, Fakler P, Sullivan T (2008) Effect of garlic on blood pressure: a systematic review and meta-analysis. BMC Cardiovasc Disord 8:13CrossRefGoogle Scholar
  59. Rivlin RS (2001) Historical perspective on the use of garlic. J Nutr 131(3s):951S–954SCrossRefGoogle Scholar
  60. Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16(6):1419–1432CrossRefGoogle Scholar
  61. Saul N, Pietsch K, Menzel R, Steinberg CE (2008) Quercetin-mediated longevity in Caenorhabditis elegans: is DAF-16 involved? Mech Ageing Dev 129(10):611–613CrossRefGoogle Scholar
  62. Saul N, Pietsch K, Menzel R, Stürzenbaum SR, Steinberg CE (2010) The longevity effect of tannic acid in Caenorhabditis elegans: disposable Soma meets hormesis. J Gerontol A Biol Sci Med Sci 65:626–635CrossRefGoogle Scholar
  63. Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CE (2011) Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J Nat Prod 74:1713–1720CrossRefGoogle Scholar
  64. Schächter F, Faure-Delanef L, Guénot F, Rouger H, Froguel P, Lesueur-Ginot L, Cohen D (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6(1):29–32CrossRefGoogle Scholar
  65. Senthil Kumaran V, Arulmathi K, Sundarapandiyan R, Kalaiselvi P (2009) Attenuation of the inflammatory changes and lipid anomalies by epigallocatechin-3-gallate in hypercholesterolemic diet fed aged rats. Exp Gerontol 44(12):745–751CrossRefGoogle Scholar
  66. Shemesh N, Meshnik L, Shpigel N, Ben-Zvi A (2017) Dietary-induced signals that activate the gonadal longevity pathway during development regulate a proteostasis switch in Caenorhabditis elegans adulthood. Front Mol Neurosci 10:254CrossRefGoogle Scholar
  67. Shen LR, Parnell LD, Ordovas JM, Lai CQ (2013) Curcumin and aging. Biofactors 39(1):133–140.  https://doi.org/10.1002/biof.1086. Epub 2013 Jan 17CrossRefPubMedGoogle Scholar
  68. Sikora E, Bielak-Zmijewska A, Mosieniak G, Piwocka K (2010) The promise of slow down ageing may come from curcumin. Curr Pharm Des 16(7):884–892. Review. PubMed PMID: 20388102CrossRefGoogle Scholar
  69. Srividhya R, Zarkovic K, Stroser M, Waeg G, Zarkovic N, Kalaiselvi P (2009) Mitochondrial alterations in aging rat brain: effective role of (-)-epigallo catechin gallate. Int J Dev Neurosci 27(3):223–231CrossRefGoogle Scholar
  70. Strachecka A, Olszewski K, Paleolog J, Borsuk G, Bajda M, Krauze M, Merska M, Chobotow J (2014) Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera. Arch Insect Biochem Physiol 86(3):165–179CrossRefGoogle Scholar
  71. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7(5):641–650CrossRefGoogle Scholar
  72. Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M (2012) Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan 1:9CrossRefGoogle Scholar
  73. Takahashi K, Ishigami A (2017) Anti-aging effects of coffee. Aging (Albany NY) 9(8):1863–1864Google Scholar
  74. Tanaka S, Haruma K, Kunihiro M, Nagata S, Kitadai Y, Manabe N, Sumii M, Yoshihara M, Kajiyama G, Chayama K (2004) Effects of aged garlic extract (AGE) on colorectal adenomas: a double-blinded study. Hiroshima J Med Sci 53(3–4):39–45PubMedGoogle Scholar
  75. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16(3):296–300CrossRefGoogle Scholar
  76. Verburgh K (2015) Nutrigerontology: why we need a new scientific discipline to develop diets and guidelines to reduce the risk of aging-related diseases. Aging Cell 14(1):17–24CrossRefGoogle Scholar
  77. Weisburger JH (2002) Lifestyle, health and disease prevention: the underlying mechanisms. Eur J Cancer Prev 11(Suppl 2):S1–S7PubMedGoogle Scholar
  78. West M, Mhatre M, Ceballos A, Floyd RA, Grammas P, Gabbita SP, Hamdheydari L, Mai T, Mou S, Pye QN, Stewart C, West S, Williamson KS, Zemlan F, Hensley K (2004) The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 91(1):133–143CrossRefGoogle Scholar
  79. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105(37):13987–13992CrossRefGoogle Scholar
  80. Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5(1):59–68CrossRefGoogle Scholar
  81. Xiang L, Sun K, Lu J, Weng Y, Taoka A, Sakagami Y, Qi J (2011) Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Biosci Biotechnol Biochem 75(5):854–858CrossRefGoogle Scholar
  82. Yang CS, Lee MJ, Chen L (1999) Human salivary tea catechin levels and catechin esterase activities: implication in human cancer prevention studies. Cancer Epidemiol Biomark Prev 8(1):83–89Google Scholar
  83. Zarse K, Bossecker A, Müller-Kuhrt L, Siems K, Hernandez MA, Berendsohn WG, Birringer M, Ristow M (2011) The phytochemical glaucarubinone promotes mitochondrial metabolism, reduces body fat, and extends lifespan of Caenorhabditis elegans. Horm Metab Res 43(4):241–243CrossRefGoogle Scholar
  84. World Population Ageing-Highlights (2015) Department of Economic and Social Affairs, United Nations, New YorkGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kalaiselvi Periandavan
    • 1
  • Prema Velusamy
    • 1
  1. 1.Department of Medical BiochemistryUniversity of Madras, Taramani CampusChennaiIndia

Personalised recommendations