Epigenetic Changes in Aging and Modulation by Dietary Nutrients

  • Shambhoo Sharan Tripathi


Aging is a complex natural process, involving various factors exhibited by all living organisms. It is visible in a consistent deterioration of regular physiological functions in a time-dependent fashion. Various scientific studies in different model organisms indicate that epigenetic alterations play a huge role in the aging process. Such types of epigenetic change occur in the genes responsible for aging and also affect their function. These types of epigenetic changes occur at different levels that include DNA methylation, change in levels of the core histones, posttranslational modifications of histone and replacement of canonical histones with another form of histone, and altered noncoding RNA expression, during both individual’s aging and replicative senescence. Dietary nutrients can significantly affect the epigenetic medications. This chapter will discuss how these changes affect the functioning of the genes and are targeted by the dietary nutrients.


Aging Dietary nutrients DNA methylation Epigenetics Histone modifications ncRNA 



I would like to thanks Dr. Abhishek Kumar Singh, Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, for critical revision of the manuscript and valuable suggestion. I also wish to acknowledge Director, IIT-Bombay, Mumbai, for giving me an opportunity to work in the institute. The authors declare that they have no competing interests.


  1. Ahmad K, Henikoff S (2002a) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 99(4):16477–16484PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad K, Henikoff S (2002b) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200PubMedCrossRefGoogle Scholar
  3. Altmann S, Murani E et al (2012) Somatic cytochrome c (CYCS) gene expression and promoter-specific DNA methylation in a porcine model of prenatal exposure to maternal dietary protein excess and restriction. Br J Nutr 107(6):791–799PubMedCrossRefGoogle Scholar
  4. Barger JL, Kayo T et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bass TM, Weinkove D et al (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev (10):546–552PubMedCrossRefGoogle Scholar
  6. Bellizzi D, D’Aquila P et al (2012) Global DNA methylation in old subjects is correlated with frailty. Age (Dordr) 34(1):169–179CrossRefGoogle Scholar
  7. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655PubMedCrossRefGoogle Scholar
  8. Besingi W, Johansson A (2014) Smoke-related DNA methylation changes in the etiology of human disease. Hum Mol Genet 23(9):2290–2297PubMedCrossRefGoogle Scholar
  9. Bird AP, Wolffe AP (1999) Methylation-induced repression – belts, braces, and chromatin. Cell 99(5):451–454PubMedCrossRefGoogle Scholar
  10. Bocklandt S, Lin W et al (2011) Epigenetic predictor of age. PLoS One 6(6):e14821PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310(5756):1954–1957PubMedCrossRefGoogle Scholar
  12. Bogdanovic O, Veenstra GJ (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118(5):549–565PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bogdarina I, Haase A et al (2010) Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PLoS One 5(2):e9237PubMedPubMedCentralCrossRefGoogle Scholar
  14. Breitling LP, Yang R et al (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 88(4):450–457PubMedPubMedCentralCrossRefGoogle Scholar
  15. Broske AM, Vockentanz L et al (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41(11):1207–1215PubMedCrossRefGoogle Scholar
  16. Calvanese V, Fernandez AF et al (2012) A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res 40(1):116–131PubMedCrossRefGoogle Scholar
  17. Chen Y, Zaman MS et al (2011) MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila) 4(1):76–86CrossRefGoogle Scholar
  18. Chiyomaru T, Yamamura S et al (2013a) Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS One 8(3):e58929PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chiyomaru T, Yamamura S et al (2013b) Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8(8):e70372PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christensen BC, Houseman EA et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602PubMedPubMedCentralCrossRefGoogle Scholar
  21. de la Parra C, Castillo-Pichardo L et al (2016) Soy Isoflavone Genistein-mediated downregulation of miR-155 contributes to the anticancer effects of Genistein. Nutr Cancer 68(1):154–164PubMedPubMedCentralCrossRefGoogle Scholar
  22. Druesne N, Pagniez A et al (2004) Repetitive treatments of colon HT-29 cells with diallyl disulfide induce a prolonged hyperacetylation of histone H3 K14. Ann N Y Acad Sci 1030:612–621PubMedCrossRefGoogle Scholar
  23. Dudley KJ, Sloboda DM et al (2011) Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One 6(7):e21662PubMedPubMedCentralCrossRefGoogle Scholar
  24. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874PubMedCrossRefGoogle Scholar
  25. Fang MZ, Chen D et al (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19 Pt 1):7033–7041PubMedCrossRefGoogle Scholar
  26. Fang M, Chen D et al (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137(1):223S–228SPubMedCrossRefGoogle Scholar
  27. Fraga MF, Ballestar E et al (2003) The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res 31(6):1765–1774PubMedPubMedCentralCrossRefGoogle Scholar
  28. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514PubMedCrossRefGoogle Scholar
  29. Guarente L (2011) Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med 364(23):2235–2244PubMedCrossRefGoogle Scholar
  30. Haigis MC, Guarente LP (2006) Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev 20(21):2913–2921PubMedCrossRefGoogle Scholar
  31. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295PubMedPubMedCentralCrossRefGoogle Scholar
  32. Haithcock E, Dayani Y et al (2005) Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102(46):16690–16695PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hayflick L (2007) Biological aging is no longer an unsolved problem. Ann N Y Acad Sci 1100:1–13PubMedCrossRefGoogle Scholar
  34. Holliday R (1986) Strong effects of 5-azacytidine on the in vitro lifespan of human diploid fibroblasts. Exp Cell Res 166(2):543–552PubMedCrossRefGoogle Scholar
  35. Jo E, Park SJ et al (2015) Kaempferol suppresses transforming growth factor-beta1-induced epithelial-to-mesenchymal and migration of A549 lung Cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Threonine-179. Neoplasia 17(7):525–537PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jones PL, Veenstra GJ et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191PubMedCrossRefGoogle Scholar
  37. Jones MJ, Goodman SJ et al (2015) DNA methylation and healthy human aging. Aging Cell 14(6):924–932PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jousse C, Parry L et al (2011) Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J 25(9):3271–3278PubMedCrossRefGoogle Scholar
  39. Kennedy BK, Austriaco NR Jr et al (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80(3):485–496PubMedCrossRefGoogle Scholar
  40. King-Batoon A, Leszczynska JM et al (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49(1):36–45PubMedCrossRefGoogle Scholar
  41. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447PubMedCrossRefGoogle Scholar
  42. Kokura K, Kaul SC et al (2001) The ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem 276(36):34115–34121PubMedCrossRefGoogle Scholar
  43. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedCrossRefGoogle Scholar
  44. Kudlow BA, Kennedy BK et al (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8(5):394–404PubMedCrossRefGoogle Scholar
  45. Kwabi-Addo B, Chung W et al (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13(13):3796–3802PubMedCrossRefGoogle Scholar
  46. Langton AK, Herrick SE et al (2008) An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol 128(5):1311–1318PubMedCrossRefGoogle Scholar
  47. Larson K, Yan SJ et al (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8(1):e1002473PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee KW, Pausova Z (2013) Cigarette smoking and DNA methylation. Front Genet 4:132PubMedPubMedCentralGoogle Scholar
  49. Lee WJ, Shim JY et al (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030PubMedCrossRefGoogle Scholar
  50. Li Y, Tollefsbol TO (2010) Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 17(20):2141–2151PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li Y, Liu L et al (2009) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer 125(2):286–296PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li Y, Daniel M et al (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98PubMedPubMedCentralCrossRefGoogle Scholar
  53. Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126(2):257–268PubMedCrossRefGoogle Scholar
  54. Lutomska A, Lebedev A et al (2008) The transcriptional response to distinct growth factors is impaired in Werner syndrome cells. Exp Gerontol 43(9):820–826PubMedCrossRefGoogle Scholar
  55. Majid S, Dar AA et al (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670PubMedPubMedCentralCrossRefGoogle Scholar
  56. Manikandan P, Vinothini G et al (2011) Eugenol inhibits cell proliferation via NF-kappaB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investig New Drugs 29(1):110–117CrossRefGoogle Scholar
  57. Mays-Hoopes LL (1989) DNA methylation in aging and cancer. J Gerontol 44(6):35–36PubMedCrossRefGoogle Scholar
  58. Meeran SM, Ahmed A et al (2010a) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1(3–4):101–116PubMedPubMedCentralCrossRefGoogle Scholar
  59. Meeran SM, Patel SN et al (2010b) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5(7):e11457PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mendelsohn AR, Larrick JW (2017) Epigenetic drift is a determinant of mammalian lifespan. Rejuvenation Res 20(5):430–436PubMedCrossRefGoogle Scholar
  61. Miyamura Y, Tawa R et al (1993) Effects of energy restriction on age-associated changes of DNA methylation in mouse liver. Mutat Res 295(2):63–69PubMedCrossRefGoogle Scholar
  62. Moran LB, Hickey L et al (2008) Neuronal pentraxin II is highly upregulated in Parkinson’s disease and a novel component of Lewy bodies. Acta Neuropathol 115(4):471–478PubMedCrossRefGoogle Scholar
  63. Mudduluru G, George-William JN et al (2011) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31(3):185–197PubMedCrossRefGoogle Scholar
  64. Mukherjee N, Kumar AP et al (2015) DNA methylation and flavonoids in genitourinary cancers. Curr Pharmacol Rep 1(2):112–120PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nelson PT, Keller JN (2007) RNA in brain disease: no longer just the messenger in the middle. J Neuropathol Exp Neurol 66(6):461–468PubMedCrossRefGoogle Scholar
  66. Oberdoerffer P, Michan S et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135(5):907–918PubMedPubMedCentralCrossRefGoogle Scholar
  67. Okita K, Ichisaka T et al (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317PubMedCrossRefGoogle Scholar
  68. Qi Y, Li X et al (2010) Decreased Srcasm expression in esophageal squamous cell carcinoma in a Chinese population. Anticancer Res 30(9):3535–3539PubMedPubMedCentralGoogle Scholar
  69. Queen BL, Tollefsbol TO (2010) Polyphenols and aging. Curr Aging Sci 3(1):34–42PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ruthenburg AJ, Li H et al (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sarg B, Koutzamani E et al (2002) Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277(42):39195–39201PubMedCrossRefGoogle Scholar
  72. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sengupta N, Seto E (2004) Regulation of histone deacetylase activities. J Cell Biochem 93(1):57–67PubMedCrossRefGoogle Scholar
  74. Shankar S, Kumar D et al (2013) Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 138(1):1–17PubMedCrossRefGoogle Scholar
  75. Shumaker DK, Dechat T et al (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103(23):8703–8708PubMedPubMedCentralCrossRefGoogle Scholar
  76. Siddiqui IA, M A, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H (2011) Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J 25:1198–1207PubMedPubMedCentralCrossRefGoogle Scholar
  77. Singhal RP, Mays-Hoopes LL et al (1987) DNA methylation in aging of mice. Mech Ageing Dev 41(3):199–210PubMedCrossRefGoogle Scholar
  78. Smeal T, Claus J et al (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84(4):633–642PubMedCrossRefGoogle Scholar
  79. Smith CL, Peterson CL (2005) ATP-dependent chromatin remodeling. Curr Top Dev Biol 65:115–148PubMedCrossRefGoogle Scholar
  80. So AY, Jung JW et al (2011) DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6(5):e19503PubMedPubMedCentralCrossRefGoogle Scholar
  81. Subramanian L, Youssef S et al (2010) Resveratrol: challenges in translation to the clinic – a critical discussion. Clin Cancer Res 16(24):5942–5948PubMedPubMedCentralCrossRefGoogle Scholar
  82. Supic G, Kozomara R et al (2009) Gene hypermethylation in tumor tissue of advanced oral squamous cell carcinoma patients. Oral Oncol 45(12):1051–1057PubMedCrossRefGoogle Scholar
  83. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  84. Taylor CK, Levy RM et al (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 67(7):398–415PubMedCrossRefGoogle Scholar
  85. Tili E, Michaille JJ et al (2010a) Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31(9):1561–1566PubMedPubMedCentralCrossRefGoogle Scholar
  86. Tili E, Michaille JJ et al (2010b) GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGF{beta} effectors, Drosha and microRNAs with opposite oncogenic potentials. Nucleic Acids Res 38(21):7673–7688PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21(2):140–146PubMedCrossRefGoogle Scholar
  88. Tsurumi A, Li WX (2012) Global heterochromatin loss: a unifying theory of aging? Epigenetics 7(7):680–688PubMedPubMedCentralCrossRefGoogle Scholar
  89. Vanyushin BF, Nemirovsky LE et al (1973) The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia 19(3):138–152PubMedCrossRefGoogle Scholar
  90. Vaquero A, Loyola A et al (2003) The constantly changing face of chromatin. Sci Aging Knowledge Environ 2003(14):RE4CrossRefGoogle Scholar
  91. Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32(4–5):383–394PubMedCrossRefGoogle Scholar
  92. Vucetic Z, Kimmel J et al (2010) Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151(10):4756–4764PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wang GG, Allis CD et al (2007a) Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med 13(9):363–372PubMedCrossRefGoogle Scholar
  94. Wang GG, Allis CD et al (2007b) Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol Med 13(9):373–380PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wang WX, Rajeev BW et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wang Z, Li Y et al (2010) Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat 13(4–5):109–118PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wang H, Bian S et al (2011) Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogenesis 32(12):1881–1889PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wen XY, Wu SY et al (2009) Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res 23(6):778–784PubMedCrossRefGoogle Scholar
  99. Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220(4601):1055–1057PubMedCrossRefGoogle Scholar
  100. Wood JG, Rogina B et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689PubMedCrossRefGoogle Scholar
  101. Xu L, Xiang J et al (2013) Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells. Anti Cancer Agents Med Chem 13(7):1126–1132CrossRefGoogle Scholar
  102. Yamada S, Tsukamoto S et al (2016) Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci Rep 6:19225PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yan M, Zhang Z et al (2002) Identification of a novel death domain-containing adaptor molecule for ectodysplasin-A receptor that is mutated in crinkled mice. Curr Biol 12(5):409–413PubMedCrossRefGoogle Scholar
  104. Park JK, Ryu JK, Lee KH, Lee JK, Yoon WJ, Lee SH, Yoo JW, Woo SM, Lee GY, Lee CH, Kim YT, Yoon YB (2007) Quantitative analysis of NPTX2 hypermethylation is a promising molecular diagnostic marker for pancreatic cancer. Pancreas 35:e9–e15PubMedCrossRefGoogle Scholar
  105. Ying SY, Chang DC et al (2008) The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 38(3):257–268PubMedCrossRefGoogle Scholar
  106. Zaman MS, Thamminana S et al (2012) Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One 7(11):e50203PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zbiec-Piekarska R, Spolnicka M et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167PubMedCrossRefGoogle Scholar
  108. Zhang N (2015) Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr 1(3):144–151PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhang W, Ji W et al (2008) Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci 83(13–14):475–480PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shambhoo Sharan Tripathi
    • 1
  1. 1.Bioscience and Bioengineering DepartmentIndian Institute of Technology-BombayMumbaiIndia

Personalised recommendations