Computational Methods for Developing Novel Antiaging Interventions

  • Apramita Chand
  • Pragin Chettiyankandy
  • Maheswata Moharana
  • Satya Narayan Sahu
  • Sukanta Kumar Pradhan
  • Subrat Kumar Pattanayak
  • Shyama Prasad Mahapatra
  • Akalabya Bissoyi
  • Abhishek Kumar Singh
  • Snehasis ChowdhuriEmail author


Advances in computational methodologies have ushered in innovations in visualization, calculations, and prediction of factors relating to aging processes and concomitant diseases with novel strategies like comparative genomics, protein interactive networks, and systems biology. Molecular level investigations of antiaging agents like phytochemicals such as curcumin, resveratrol, and quercetin have been carried out by electronic structure calculations by density functional theory and molecular docking studies to cytochrome P450 3A4 protein. It is found that both hydrogen bonding and hydrophobic interactions play a crucial role in the interaction between these phytochemicals and CY3A4 protein, which may provide important insights into modulations of drug metabolism in aging populations.


Molecular docking Antiaging Phytochemicals 



A. Chand is thankful to the Council of Scientific and Industrial Research (CSIR) for the Research Fellowship. A. Bissoyi is thankful to the Department of Science and Technology (DST) Government of India for the financial support through grant number YSS/2015/000618. M. Moharana would like to express his gratitude to the Department of Chemistry, Utkal University. S. N Sahu and S. K Pradhan extend sincere thanks to the Department of Bioinformatics, OUAT. S. K Pattanayak and S. P Mahapatra are obliged to the Department of Chemistry, National Institute of Technology Raipur. A. K. Singh is grateful to the Department of Biochemistry of Allahabad University.


  1. Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA Jr, Aris JP (2009) Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8(4):353–369CrossRefGoogle Scholar
  2. Benayoun, BA, Pollina EA, and Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593CrossRefGoogle Scholar
  3. Bissoyi A, Pattanayak SK, Bit A, Patel A, Singh AK, Behera SS, Satpathy D (2018) Alphavirus nonstructural proteases and their inhibitors. In: Viral proteases and their inhibitors, pp 77–104Google Scholar
  4. Bissoyi A, Singh AK, Pattanayak SK, Bit A, Sinha SK, Patel A et al (2017) Understanding the molecular mechanism of improved proliferation and osteogenic potential of human mesenchymal stem cells grown on a polyelectrolyte complex derived from non-mulberry silk fibroin and chitosan. Biomed Mater 13(1):015011CrossRefGoogle Scholar
  5. Bock C, Konstantin H, Joachim B, Thomas L (2009) EpiGRAPH: user-friendly software for statistical analysis and prediction of (epi) genomic data. Genome Biol 10(2):R14CrossRefGoogle Scholar
  6. Bock C, Thomas L (2008) Computational epigenetics. Bioinformatics 24(1):1–10CrossRefGoogle Scholar
  7. Boyd D, Crawford K (2012) Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf Commun Soc 15(5):662–679CrossRefGoogle Scholar
  8. Brazhnik P, de la Fuente A, Mendes P (2002) Gene networks: how to put the function in genomics. Trends Biotechnol 20(11):467–472CrossRefGoogle Scholar
  9. Cevenini E, Bellavista E, Tieri P, Castellani G, Francesco L, Francesconi M, Mishto M (2010) Systems biology and longevity: an emerging approach to identify innovative anti-aging targets and strategies. Curr Pharm Des 16(7):802–813CrossRefGoogle Scholar
  10. Chand A, Chettiyankandy P, Pattanayak SK, Chowdhuri S (2017) Effects of trimethylamine-N-oxide (TMAO) on aqueous N-methylacetamide solution: a comparison of different force fields of TMAO. J Mol Liq 225:926–935CrossRefGoogle Scholar
  11. Cho Y, Richard K (2017) Thermodynamic and electrostatic analysis of Flavonol and tocopherol analogues in anti-aging products. Bull Am Phys Soc 62Google Scholar
  12. Chowdhuri S, Pattanayak SK (2013) Pressure effects on the dynamics of ions and solvent molecules in liquid methanol under ambient and cold conditions: importance of solvent’s H-bonding network. J Mol Liq 180:172–178CrossRefGoogle Scholar
  13. Christensen K, Doblhammer G, Rau R, Vaupel JW (2009) Ageing populations: the challenges ahead. Lancet 374(9696):1196–1208CrossRefGoogle Scholar
  14. Comfort A (1964) Ageing. The biology of senescence. Holt, Rinehart and Winston, New YorkGoogle Scholar
  15. De Magalhães JP, Toussaint O (2004) How bioinformatics can help reverse engineer human aging. Ageing Res Rev 3(2):125–141CrossRefGoogle Scholar
  16. Deng R, Xu C, Chen X, Chen P, Wang Y, Zhou X, Bi H (2014) Resveratrol suppresses the inducible expression of CYP3A4 through the pregnane X receptor. J Pharmacol Sci 126(2):146–154CrossRefGoogle Scholar
  17. Dresser GK, Spence JD, Bailey DG (2000) Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 38(1):41–57CrossRefGoogle Scholar
  18. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328:321–326CrossRefGoogle Scholar
  19. Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418CrossRefGoogle Scholar
  20. Frazer KA, Lior P, Alexander P, Edward MR, Inna D (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W279CrossRefGoogle Scholar
  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2013) Gaussian 09, Revision E.01. Gaussian Inc Wallingford CTGoogle Scholar
  22. Gelino S, Hansen M (2012) Autophagy-an emerging anti-aging mechanism. J Clin Exp Pathol. Suppl 4: 006Google Scholar
  23. George J, Karen B, Geoffrey CF (1995) Age but not gender selectively affects expression of individual cytochrome P450 proteins in human liver. Biochem Pharmacol 50(5):727–730CrossRefGoogle Scholar
  24. Goñi J, Francisco JE, Nieves VM, Jorge S, Sergio A, Ion A, Villoslada P (2008) A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Syst Biol 2(1):52CrossRefGoogle Scholar
  25. Hoffman TE, Katherine JB, Lyle W, William HH (2017) A multimethod computational simulation approach for investigating mitochondrial dynamics and dysfunction in degenerative aging. Aging Cell 16(6):1244–1255CrossRefGoogle Scholar
  26. Hsu S, Shih-Ming H, Ann C, Chiao-Yin S, Shih-Hua L, Jin-Shuen C, Shu-Ting L, Yu-Juei H (2014) Resveratrol increases anti-aging klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway. Int J Biochem Cell Biol 53:361–371CrossRefGoogle Scholar
  27. Kaladhar DSVGK (2011) Computational studies of Sirtuins in the treatment of type II diabetes mellitus. Asian J Pharm Res Health Care 3(2):38–42Google Scholar
  28. Karabacak M, Sinha L, Prasad O, Cinar Z, Cinar M (2012) The spectroscopic (FT-Raman, FT-IR, UV and NMR), molecular electrostatic potential, polarizability and hyperpolarizability, NBO and HOMO–LUMO analysis of monomeric and dimeric structures of 4-chloro-3, 5-dinitrobenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc 93:33–46CrossRefGoogle Scholar
  29. Khan M, Kalim A, Salman A, Arif JM (2017) Development of in silico protocols to predict structural insights into the metabolic activation pathways of xenobiotics. Interdiscip Sci Comput Life Sci:1–17Google Scholar
  30. Kinirons MT, O’Mahony MS (2004) Drug metabolism and ageing. Br J Clin Pharmacol 57(5):540–544CrossRefGoogle Scholar
  31. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447CrossRefGoogle Scholar
  32. Koopmans T (1933) Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1(1):104–113Google Scholar
  33. Laye MJ, ViLinh T, Dean PJ, Pankaj K, Daniel ELP (2015) The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila. Aging Cell 14(5):797–808CrossRefGoogle Scholar
  34. López-Otín C et al (2013) The hallmarks of aging. Cell 153:1194–1217CrossRefGoogle Scholar
  35. Lu L, Shufang Z, Haijun Z, Shaowei Z (2013) Improvement of antioxidative activity of resveratrol by elongating conjugated chain: a DFT theoretical study. Comput Theor Chem 1019:39–47CrossRefGoogle Scholar
  36. Marino G, Federico P, Frank M, Guido K (2014) Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy 10(11):1879–1882CrossRefGoogle Scholar
  37. Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H (2005) Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol 231(1):75–85CrossRefGoogle Scholar
  38. Miller JA, Michael CO, Daniel HG (2008) A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci 28(6):1410–1420CrossRefGoogle Scholar
  39. Misaka S, Keisuke K, Satomi O, José PW, Monica G, Sekihiro T, Toshiyuki K, Junko K, Hiroshi W, Shizuo Y (2013) Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab Pharmacokinet 28(3):244–249CrossRefGoogle Scholar
  40. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  41. Pattanayak SK, Chowdhuri S (2013a) Effects of concentrated NaCl and KCl solutions on the behaviour of aqueous peptide bond environment: single-particle dynamics and H-bond structural relaxation. Mol Phys 111(21):3297–3310CrossRefGoogle Scholar
  42. Pattanayak SK, Chowdhuri S (2013b) Pressure and temperature dependence on the hydrogen bonding and dynamics of ammonium ion in liquid water: a molecular dynamics simulations study. J Mol Liq 186:98–105CrossRefGoogle Scholar
  43. Pattanayak SK, Chowdhuri S (2014) Effects of methanol on the hydrogen bonding structure and dynamics in aqueous N-methylacetamide solution. J Mol Liq 194:141–148CrossRefGoogle Scholar
  44. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59CrossRefGoogle Scholar
  45. Schaefer MH, Jean-Fred F, Arunachalam V, Pablo P, Erich EW, Miguel AA (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS One 7(2):e31826CrossRefGoogle Scholar
  46. Shi R, Wang Y, Zhu X, Lu X (2012) Exploration of the binding of curcumin analogues to human P450 2C9 based on docking and molecular dynamics simulation. J Mol Model 18(6):2599–2611CrossRefGoogle Scholar
  47. Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18(13):2328–2343CrossRefGoogle Scholar
  48. Suresh Rattan IS, Kryzch V, Schnebert S, Perrier E, Nizard C (2013) Hormesis-based anti-aging products: a case study of a novel cosmetic. Dose-Response 11:99–108PubMedGoogle Scholar
  49. Tanak H, Toy M (2013) Molecular structure, vibrational spectra, NLO and MEP analysis of bis [2-hydroxy-кO-N-(2-pyridyl)-1-naphthaldiminato-кN] zinc (II). Spectrochim Acta A Mol Biomol Spectrosc 115:145–153CrossRefGoogle Scholar
  50. Vincenzo C, Lara E, Kahn A, Fraga MF (2009) Ageing Res Rev 8(4):268–276CrossRefGoogle Scholar
  51. Visualizer DS (2005) Accelrys Software Inc. Discovery Studio Visualizer, 2Google Scholar
  52. Zerrouki M, Farid B (2018) DFT study of the mechanisms of nonenzymatic DNA repair by phytophenolic antioxidants. J Mol Model 24(4):78CrossRefGoogle Scholar
  53. Zahn JM, Rebecca S, Hannes V, Emily C, Krystyna M, Ralph R, Ronald WD, Kevin GB, Art BO, Stuart KK (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2(7):e115CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Apramita Chand
    • 1
  • Pragin Chettiyankandy
    • 1
  • Maheswata Moharana
    • 2
  • Satya Narayan Sahu
    • 3
  • Sukanta Kumar Pradhan
    • 3
  • Subrat Kumar Pattanayak
    • 4
  • Shyama Prasad Mahapatra
    • 4
  • Akalabya Bissoyi
    • 5
  • Abhishek Kumar Singh
    • 6
  • Snehasis Chowdhuri
    • 1
    Email author
  1. 1.School of Basic SciencesIndian Institute of TechnologyBhubaneswarIndia
  2. 2.Department of ChemistryUtkal UniversityBhubaneswarIndia
  3. 3.Department of BioinformaticsOUATBhubaneswarIndia
  4. 4.Department of ChemistryNational Institute of TechnologyRaipurIndia
  5. 5.Department of Biomedical EngineeringNational Institute of TechnologyRaipurIndia
  6. 6.Department of BiochemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations