Advertisement

Night-Vision Data Classification Based on Sparse Representation and Random Subspace

  • Lianfa BaiEmail author
  • Jing Han
  • Jiang Yue
Chapter

Abstract

The traditional classification method is difficult to achieve good classification results when the training samples are few, and the unsupervised classification algorithms cannot use class information to improve their performance. Thus, it is necessary to apply semi-supervised classification methods. This chapter introduces semi-supervised data classification based on sparse representation and stochastic subspace. First, the dictionary in sparse representation is simplified to improve the speed and accuracy of sparse representation. To meet the needs of a complete dictionary, we combine each random subspace of sparse representation when the dimensions of the original sample are far lower than the random subspace to enhance the ability of the original data. Second, with traditional random subspace methods, all features have the same probability for selection, and a method based on attribute features is introduced, promoting the accuracy of selected key feature probabilities to enhance the final accuracy of data classification.

References

  1. Aleksandar, D., & Qiu, K. (2010). Automatic hard thresholding for sparse signal reconstruction from NDE measurements. Review of Progress in Quantitative Nondestructive Evaluation, 29(1211), 806–813.Google Scholar
  2. Belhumeur, P. N., Hespanha, J. P., & Kriegman D. J. (1997). Eigenfaces versus fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine intelligence, 19(7), 711–720.CrossRefGoogle Scholar
  3. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neurocomputing, 15(6), 1373–1396.zbMATHGoogle Scholar
  4. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization, a geometric framework for learning from labelled and unlabelled examples. Journal on Machine Learning Research, 7, 2399–2434.zbMATHGoogle Scholar
  5. Bezdek, J. C., Hathaway, R. J. (2002). Some notes on alternating optimisation. In AFSS International Conference on Fuzzy Systems (pp. 288–300). Springer Berlin Heidelberg. http://archive.ics.uci.edu/ml/datasets.html.CrossRefGoogle Scholar
  6. Cai, D. He, X., Han, J. (2007). Semi-supervised discriminant analysis. ICCV, 1–7.Google Scholar
  7. Cevikalp, H., Verbeek, J., Jurie, F., & Klaser, A. (2008). Semi-supervised dimensionality reduction using pairwise equivalence constraints. VISAPP, 1, 489–496.Google Scholar
  8. Chen, Z., & Haykin, S. (2002). On different facets of regularization theory. Neurocomputing, 14(12), 2791–2846.zbMATHGoogle Scholar
  9. Chen, K., & Wang, S. H. (2011). Semi-supervised learning via regularised boosting working on multiple semi-supervised assumptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1), 129–143.CrossRefGoogle Scholar
  10. Drori, I., Donoho, D. L. (2006). Solution of L1 minimisation problems by LARS homotopy methods. IEEE International Conference on Acoustics, Speech and Signal Processing, 636–639.Google Scholar
  11. Fan, M. Y., Zhang, X. Q., Lin, Z. C., Zhang, Z. F., & Bao, H. J. (2014). A regularised approach for geodesic-based semisupervised multimanifold learning. IEEE Transactions on Image Processing, 23(5), 2133–2147.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Fan, M., Zhang, X., Lin, Z., Zhang, Z., Bao, H. (2012). Geodesic based semi-supervised multi-manifold feature extraction. ICDM, 852–857.Google Scholar
  13. Fan, M. Y., Gu, N. N., Qiao, H., Zhang, B. (2011). Sparse regularization for semi-supervised classification. Pattern Recognition, 44(8), 1777–1784.zbMATHCrossRefGoogle Scholar
  14. Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neurocomputing, 10(6), 1455–1480.Google Scholar
  15. Han, J., Yue, J., Zhang, Y., & Bai, L. F. (2014). Kernel maximum likelihood-scaled locally linear embedding for night vision images. Optics & Laser Technology, 56(1), 290–298.CrossRefGoogle Scholar
  16. He, X. F., Yan, S. C., Hu, Y. X., Niuogi, P., & Zhang, H. J. (2005). Face recognition using laplacian faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 328–340.CrossRefGoogle Scholar
  17. Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Aanalysis and Machine Intelligence, 20(8), 832–844.CrossRefGoogle Scholar
  18. Jenatton, R., Mairal, J., Obozinski, G., Bach, F. (2010). Proximal methods for sparse hierarchical dictionary learning. International Conference on Machine Learning, 487–494.Google Scholar
  19. Kim, K. I., & Kwon, Y. (2010). Single-image super-resolution using sparse regression and natural image prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1127–1133.CrossRefGoogle Scholar
  20. Lai, Z. H., Wan, M. H., Jin, Z., & Yang, J. (2011). Sparse two dimensional local discriminant projections for feature extraction. Neurocomputing, 74(4), 629–637.CrossRefGoogle Scholar
  21. Lai, Z. H., Wong, W. K., Jin, Z., Yang, J., & Xu, Y. (2012). Sparse approximation to the eigensubspace for discrimination. IEEE Transactions on Neural Networks and Learning Systems, 23(12), 1948–1960.CrossRefGoogle Scholar
  22. Lee, K. C., Ho, J., & Kriegman, D. J. (2005). Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 684–698.CrossRefGoogle Scholar
  23. Li, B., Huang, D. S., Wang, C., & Liu, K. H. (2008). Feature extraction using constrained maximum variance mapping. Pattern Recognition, 41(11), 3287–3294.zbMATHCrossRefGoogle Scholar
  24. Liu, W. F., Tao, D. C., Cheng, J., & Tang, Y. Y. (2014). Multiview Hessian discriminative sparse coding for image annotation. Computer Vision and Image Understanding, 118, 50–60.CrossRefGoogle Scholar
  25. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A. (2008). Supervised dictionary learning. Conference on Neural Information Processing Systems, 1–8.Google Scholar
  26. Mairal, J., Jenatton, R., Obozinski, G., Bach, F. (2010). Network flow algorithms for structured sparsity. Conference on Neural Information Processing Systems, 1558–1566.Google Scholar
  27. Mallapragada, P. K., Jin, R., Jain, A. K., & Liu Semiboost, Y. (2009). Boosting for semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2000–2014.CrossRefGoogle Scholar
  28. Martinez, A. M., Kak, A. C. (2001). PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine intelligence, 23(2), 228–233.CrossRefGoogle Scholar
  29. Martinez, A. M., Benavente R. (1998). The AR face database. CVC Technical Report (p. 24).Google Scholar
  30. Poggio, T., & Girosi, F. (1990b). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247(4945), 978–982.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Poggio, T., Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE. 78(9), 1481–1497.zbMATHCrossRefGoogle Scholar
  32. Protter, M., & Elad, M. (2009). Image sequence denoising via sparse and redundant representations. IEEE Transactions on Image Processing, 18(18), 27–35.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Qiao, L. S., Chen, S. C., & Tan, X. Y. (2010). Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognition Letters, 31, 422–429.CrossRefGoogle Scholar
  34. Ramirez, I., Sprechmann, P., Sapiro, G. (2010). Classification and clustering via dictionary learning with structured incoherence and shared features. IEEE Conference on Computer Vision and Pattern Recognition, 3501–3508.Google Scholar
  35. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimension reduction by locally linear embedding. Science, 290(5), 2323–2326.CrossRefGoogle Scholar
  36. Samaria, F., Harter, A. (1994). Parametreisation of a stochastic model for human face identification. In Proceedings of the second IEEE workshop on applications of computer vision (pp. 138–142).Google Scholar
  37. Scholkopf, B., Herbrich, R., & Smola, A. J. (2000). A generalised representer theorem. Conference on Computational Learning Theory, 42(3), 416–426.zbMATHGoogle Scholar
  38. Shi, C. J., Ruan, Q. Q., An, G. Y., Ge, C., & An, G. (2015). Semi-supervised sparse feature selection based on multi-view Laplacian regularization. Image and Vision Computing, 41, 1–10.CrossRefGoogle Scholar
  39. Sim, T., Baker, S., & Bsat, M. (2003a). The CMU pose illumination and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1615–1618.CrossRefGoogle Scholar
  40. Sim, T., Baker, S., & Bsat, M. (2003b). The CMU pose, illumination, and expression database. TPAMI., 25(12), 1615–1618.CrossRefGoogle Scholar
  41. Tenenbaum, J. B., Silva, V. D., & Langform, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5000), 2319–2323.CrossRefGoogle Scholar
  42. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 58(1), 267–288.MathSciNetzbMATHGoogle Scholar
  43. Tikhonov, A. N., Arsenin, V. Y. (1977). Solutions of ill-posed problems. Vh Winston.Google Scholar
  44. Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.zbMATHGoogle Scholar
  45. Wechsler, H., Phillips, P. J., Bruce, V., Fogelman, F., & Huang, T. S. (1998). Face recognition: from theory to applications. NATO ASI Series F. Computer and Systems Sciences, 163, 446–456.Google Scholar
  46. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1), 37–52.CrossRefGoogle Scholar
  47. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine intelligence, 31(2), 210–227.CrossRefGoogle Scholar
  48. Wu, F., Wang, W., Yang, Y., Zhuang, Y., & Nie, F. (2010). Classification by semi-supervised discriminative regularization. Neurocomputing, 73(10), 1641–1651.CrossRefGoogle Scholar
  49. Xue, H., Chen, S., & Yang, Q. (2009). Discriminatively regularised least-squares classification. Pattern Recognition, 42(1), 93–104.zbMATHCrossRefGoogle Scholar
  50. Yan, S., Wang, H. (2009). Semi-supervised learning by sparse representation. SIAM International Conference on Data Mining, 792–801.Google Scholar
  51. Yang, W. K., Sun, C. Y., & Zhang, L. (2011). A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognition, 44(8), 1649–1657.zbMATHCrossRefGoogle Scholar
  52. Yang, J. C., Wright, J., Huang, T., Ma, Y. (2008). Image super-resolution as sparse representation of raw image patches. IEEE Conference on Computer Vision and Pattern Recognition, 2378–2385.Google Scholar
  53. Yin, Q. Y., Wu, S., He, R., & Wang, L. (2015). Multi-view clustering via pairwise sparse subspace representation. Neurocomputing, 156, 12–21.CrossRefGoogle Scholar
  54. Yu, G. X., Zhang, G., Domeniconi, C., Yu, Z. W., & You, J. (2012a). Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recognition, 45(3), 1119–1135.zbMATHCrossRefGoogle Scholar
  55. Yu, G. X., Zhang, G., Yu, Z. W., Domeniconi, C., You, J., & Han, G. Q. (2012b). Semi-supervised ensemble classification in subspaces. Applied Soft Computing, 12(5), 1511–1522.CrossRefGoogle Scholar
  56. Yu, G. X., Zhang, G. J., Zhang, Z. L., Yu, Z. W., & Lin, D. (2015). Semi-supervised classification based on subspace sparse representation. Knowledge and Information Systems, 43(1), 81–101.CrossRefGoogle Scholar
  57. Zhao, M. B., Chow, T. W. S., Zhou, W., Zhang, Z., & Li, B. (2014). Automatic image annotation via compact graph based semi-supervised learning. Knowledge-Based Systems, 76, 148–165.CrossRefGoogle Scholar
  58. Zhao, M. B., Zhan, C., Wu, Z., & Tang, P. (2015). Semi-supervised image classification based on local and global regression. IEEE Signal Processing Letters, 22(10), 1666–1670.CrossRefGoogle Scholar
  59. Zhao, Z., Bai, L., Zhang, Y. et al. (2018). Probabilistic semi-supervised random subspace sparse representation for classification. Multimedia Tools and Applications. Springer, pp. 1–27.Google Scholar
  60. Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global consistency. Advances in Neural Information Processing Systems, 16(16), 321–328.Google Scholar
  61. Zhu, X. J., Ghahramani, Z. B., Lafferty, J. D. (2003). Semi-supervised learning using Gaussian fields and harmonic functions. International Conference on Machine Learning, 912–919.Google Scholar
  62. Zhu, X. (2005). Semi-supervised learning literature survey.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  3. 3.National Key Laboratory of Transient PhysicsNanjing University of Science and TechnologyNanjingChina

Personalised recommendations