Advertisement

Multi-visual Tasks Based on Night-Vision Data Structure and Feature Analysis

  • Lianfa BaiEmail author
  • Jing Han
  • Jiang Yue
Chapter

Abstract

Data structure and feature analysis is the first step which provides inputs of many computer vision algorithms. Thus, it is vitally important to ensure its speed, accuracy and robustness. Currently, there is a wide performance gap between the slow feature analysis and the much higher requests for faster real-time solutions. This chapter introduces the active research field of visual feature analysis, referring to literature review, addressing the detail techniques and demonstrating how to apply these features in some vision tasks. Such methods utilise low-level processing to determine valuable vision tasks, while using feature attributes, such as super-resolution (SR), superpixel segmentation and saliency.

References

  1. Achanta, R., Hemami, S., & Estrada, F., et al. (2009). Frequency-tuned salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1597–1604), IEEE.Google Scholar
  2. Achanta, R., Shaji, A., Smith, K., et al. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis & Machine Intelligence, 34(11), 2274.CrossRefGoogle Scholar
  3. Aharon, M., Elad, M., & Bruckstein, A. (2006). rmK-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. In IEEE Transactions on Signal Processing (pp. 4311–4322).CrossRefGoogle Scholar
  4. Bahy, R. M., Salama, G. I., & Mahmoud, T. A. (2014). Adaptive regularisation-based super resolution reconstruction technique for multi-focus low-resolution images. Signal Processing, 103(1), 155–167.CrossRefGoogle Scholar
  5. Barnes, C., Shechtman, E., & Finkelstein, A., et al. (2009). Patch Match: A randomised correspondence algorithm for structural image editing. ACM, 1–11.Google Scholar
  6. Barnes, C., Shechtman, E., Dan, B. G., et al. (2010). The generalised PatchMatch correspondence algorithm. In European Conference on Computer Vision Conference on Computer Vision (pp. 29–43). Springer–Verlag.Google Scholar
  7. Buyssens, P., Gardin, I., Su, R., et al. (2014). Eikonal-based region growing for efficient clustering. Image & Vision Computing, 32(12), 1045–1054.CrossRefGoogle Scholar
  8. Chakrabarti, A., Rajagopalan, A. N., & Chellappa, R. (2007). Super-resolution of face images using kernel PCA-based prior. IEEE Transactions on Multimedia, 9(4), 888–892.CrossRefGoogle Scholar
  9. Chang, G.,Yeung, D. Y., & Xiong, Y. (2004). Super-resolution through neighbour embedding. In Computer Vision and Pattern Recognition (CVPR). Proceedings of the 2004 IEEE Computer Society Conference, IEEE Xplore (Vol. 1, pp. 275–282).Google Scholar
  10. Chen, L., Deng, L., Shen, W., et al. (2016). Reproducing kernel hilbert space based single infrared image super resolution. Infrared Physics & Technology, 77, 104–113.CrossRefGoogle Scholar
  11. Cheng, M. M., Zhang, G. X., & Mitra, N. J., et al. (2011) Global contrast based salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 409–416).Google Scholar
  12. Chuang, C. H., Tsai, L. W., & Deng, M. S., et al. (2014). Vehicle licence plate recognition using super-resolution technique. In IEEE International Conference on Advanced Video and Signal Based Surveillance (pp. 411–416).Google Scholar
  13. Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 24(5), 603–619.CrossRefGoogle Scholar
  14. Erdem, E., & Erde, A. (2013). Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision, 13(4), 11.CrossRefGoogle Scholar
  15. Freeman, W. T., & Pasztor, E. C. (2000). Learning low-level vision. International Journal of Computer Vision, 40(1), 25–47.CrossRefGoogle Scholar
  16. Guo, C., & Zhang, L. (1988). A Novel Multiresolution Spatiotemporal saliency detection model and its applications in image and video compression. Oncogene, 3(5), 523.Google Scholar
  17. Hardie, R. C., Barnard, K. J., & Armstrong, E. E. (1997). Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 6(12), 1621–1633.CrossRefGoogle Scholar
  18. Hou, C., & Zhang, L. (2007). Saliency detection: A spectral residual approach. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR) ’07 (pp. 1–8), IEEE.Google Scholar
  19. Hou, X., & Zhang, L. (2009). Dynamic visual attention: Searching for coding length increments. In Conference on Neural Information Processing Systems (pp. 681–688).Google Scholar
  20. Huang, J. B., Kang, S. B., Ahuja, N., et al. (2014). Image completion using planar structure guidance. Acm Transactions on Graphics, 33(4), 129.Google Scholar
  21. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 20(11), 1254–1259.CrossRefGoogle Scholar
  22. Karacan, L., Erdem, E., & Erdem, A. (2013). Structure-preserving image smoothing via region covariances. Acm Transactions on Graphics, 32(6), 1–11.CrossRefGoogle Scholar
  23. Levinshtein, A., Stere, A., Kutulakos, K. N., et al. (2009). TurboPixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis & Machine Intelligence, 31(12), 2290.CrossRefGoogle Scholar
  24. Li, X., Li, Y., & Shen, C., et al. (2013). Contextual hypergraph modeling for salient object detection. In IEEE International Conference on Computer Vision (pp. 3328–3335), IEEE.Google Scholar
  25. Liu, T., Yuan, Z., Sun, J., et al. (2010). Learning to detect a salient object. IEEE Transactions on Pattern Analysis & Machine Intelligence, 33(2), 353–367.Google Scholar
  26. Liu, M. Y., Tuzel, O., & Ramalingam, S., et al. (2011). Entropy rate superpixel segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 2097–2104), IEEE.Google Scholar
  27. Liu, J., Dai, S., Guo, Z., et al. (2016). An improved POCS super-resolution infrared image reconstruction algorithm based on visual mechanism. Infrared Physics & Technology, 78, 92–98.CrossRefGoogle Scholar
  28. Ma, Y. F., & Zhang, H. J. (2003). Contrast-based image attention analysis by using fuzzy growing. In Eleventh ACM International Conference on Multimedia, Berkeley, CA, USA (pp. 374–381), November, DBLP.Google Scholar
  29. Mahadevan, V., & Vasconcelos, N. (2013). Biologically inspired object tracking using centre-surround saliency mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 541–554.CrossRefGoogle Scholar
  30. Michael, V. D. B., Boix, X., & Roig, G., et al. (2012). SEEDS: superpixels extracted via energy-driven sampling. In European Conference on Computer Vision (pp. 13–26), Springer, Berlin, Heidelberg.Google Scholar
  31. Moore, A. P., Prince, S. J. D., & Warrell, J., et al. (2008). Superpixel lattices. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–8), IEEE.Google Scholar
  32. Neubert, P., & Protzel, P. (2012). Superpixel benchmark and comparison. Forum Bildverarbeitung.Google Scholar
  33. Perazzi, F., Krähenbühl, P., & Pritch, Y., et al. (2012). Saliency filters: Contrast based filtering for salient region detection. IEEE Conference on Computer Vision and Pattern Recognition (pp. 733–740). IEEE Computer Society.Google Scholar
  34. Qi, W., Han, J., & Zhang, Y., et al. (2017). Infrared image super-resolution via transformed self-similarity. Infrared Physics & Technology, 89–96, Elsevier.Google Scholar
  35. Ran, M., Zelnik–Manor, L., & Tal, A. (2014). How to evaluate foreground maps. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255), IEEE.Google Scholar
  36. Ren, M. (2003). Learning a classification model for segmentation. IEEE International Conference on Computer Vision (p. 10), IEEE Computer Society.Google Scholar
  37. Ren, C. Y., & Reid, I. (2011). gSLIC: A real-time implementation of SLIC superpixel segmentation. University of Oxford.Google Scholar
  38. Schölkopf, B., Platt, J., & Hofmann, T. (2007). Graph-based visual saliency (pp. 545–552).MIT Press.Google Scholar
  39. Seo, H. J., & Milanfar, P. (2009). Nonparametric bottom-up saliency detection by self-resemblance. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. CVPR Workshops 2009 (pp. 45–52), IEEE.Google Scholar
  40. Seo, H. J., & Milanfar, P. (2010). Training-free, generic object detection using locally adaptive regression kernels. IEEE Transactions on Pattern Analysis & Machine Intelligence, 32(9), 1688.CrossRefGoogle Scholar
  41. Seo, H. J., & Milanfar, P. (2011). Action recognition from one example. IEEE Transactions on Pattern Analysis & Machine Intelligence, 33(5), 867–882.CrossRefGoogle Scholar
  42. Sheikh, H. R., Bovik, A. C., & Veciana, G. D. (2005). An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14(12), 2117–2128.CrossRefGoogle Scholar
  43. Shi, J., & Malik, J. (2000). Normalised cuts and image segmentation. IEEE Computer Society.Google Scholar
  44. Sui, X., Chen, Q., Gu, G., et al. (2014). Infrared super-resolution imaging based on compressed sensing. Infrared Physics & Technology, 63(11), 119–124.CrossRefGoogle Scholar
  45. Takeda, H., Farsiu, S., & Milanfar, P. (2007). Kernel regression for image processing and reconstruction. IEEE Transactions on Image Processing, 16(2), 349–366.MathSciNetCrossRefGoogle Scholar
  46. Tom, B. C., & Katsaggelos, A. K. (1995). Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In IEEE International Conference on Image Processing (Vol. 2, pp. 539–542).Google Scholar
  47. Treiaman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.CrossRefGoogle Scholar
  48. Tuzel, O., Porikli, F., & Meer, P. (2006) Region covariance: A fast descriptor for detection and classification. Computer Vision—ECCV 2006, European Conference on Computer Vision, Graz, Austria (pp. 589–600), May 7–13, 2006, DBLP.Google Scholar
  49. Ur, H., & Gross, D. (1992). Improved resolution from subpixel shifted pictures. Cvgip Graphical Models & Image Processing, 54(2), 181–186.CrossRefGoogle Scholar
  50. Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(6), 583–598.CrossRefGoogle Scholar
  51. Wang, Z., Bovik, A. C., Sheikh, H. R., et al. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 13(4), 600–612.CrossRefGoogle Scholar
  52. Wang, S., Zhang, L., & Liang, Y., et al. (2012a). Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 2216–2223).Google Scholar
  53. Wang, X., Lv, G., & Xu, L. (2012b). Infrared dim target detection based on visual attention. Infrared Physics & Technology, 55(6), 513–521.CrossRefGoogle Scholar
  54. Wang, X., Ning, C., & Xu, L. (2015). Saliency detection using mutual consistency-guided spatial cues combination. Infrared Physics & Technology, 72, 106–116.CrossRefGoogle Scholar
  55. Yang, J., Wright, J., & Huang, T., et al. (2008) Image super-resolution as sparse representation of raw image patches. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–8).Google Scholar
  56. Yang, J., Wright, J., Huang, T. S., et al. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 19(11), 2861–2873.MathSciNetCrossRefGoogle Scholar
  57. Yang, J., Lin, Z., & Cohen, S. (2013). Fast image super-resolution based on in-place example regression. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1059–1066).Google Scholar
  58. Yang, C., Zhang, L., & Lu, H., et al. (2013). Saliency detection via graph-based manifold ranking. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 3166–3173).Google Scholar
  59. Yang, C. Y., Ma, C., & Yang, M. H. (2014). Single-image super-resolution: A benchmark. In European Conference on Computer Vision (pp. 372–386). Springer, Cham.Google Scholar
  60. Zeyde, R., Elad, M., & Protter, M. (2012). On single image scale-up using sparse-representations. In International Conference on Curves and Surfaces (pp. 711–730), Springer Berlin Heidelberg.CrossRefGoogle Scholar
  61. Zhai, Y., & Shah, M. (2006). Visual attention detection in video sequences using spatiotemporal cues. In ACM International Conference on Multimedia ACM (815–824).Google Scholar
  62. Zhao, Y., Chen, Q., Sui, X., et al. (2015). A novel infrared image super-resolution method based on sparse representation. Infrared Physics & Technology, 71, 506–513.CrossRefGoogle Scholar
  63. Zhou, F., Kang, S. B., & Cohen, M. F. (2014). Time-mapping using space-time saliency. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 3358–3365). IEEE Computer Society.Google Scholar
  64. Zhu, Y. M. (1992). Generalised sampling theorem. IEEE Transactions on Circuits & Systems II Analog & Digital Signal Processing, 39(8), 587–588.CrossRefGoogle Scholar
  65. Zhu, S., Cao, D., Wu, Y., et al. (2016). Improved accuracy of superpixel segmentation by region merging method. Frontiers of Optoelectronics, 4, 633–639.CrossRefGoogle Scholar
  66. Zoran, D., Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In International Conference on Computer Vision (pp. 479–486). IEEE Computer Society, 2011.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  3. 3.National Key Laboratory of Transient PhysicsNanjing University of Science and TechnologyNanjingChina

Personalised recommendations