Advertisement

Hierarchical Bidirectional Fuzzy Rule Interpolation and Rule Base Refinement

  • Shangzhu Jin
  • Qiang Shen
  • Jun Peng
Chapter

Abstract

For many practical intelligent decision-making applications, the “curse of dimensionality” is a serious problem; that is, the number of rules increases exponentially along with the number of input variables to the fuzzy inference system (Raju G, Zhou J, Roger A (1991) Int J Control 54(5):1201–1216 [1]).

References

  1. 1.
    G. Raju, J. Zhou, A. Roger, Hierarchical fuzzy control. Int. J. Control 54(5), 1201–1216 (1991)Google Scholar
  2. 2.
    G. Raju, J. Zhou, Adaptive hierarchical fuzzy controller. IEEE Trans. Syst. Man Cybern. 23(4), 973–980 (1993)Google Scholar
  3. 3.
    L.T. Kóczy, K. Hirota, L. Muresan, Interpolation in hierarchical fuzzy rule bases, in Proceedings of International Conference on Fuzzy Systems (2000), pp. 471–477Google Scholar
  4. 4.
    L.T. Kóczy, K. Hirota, L. Muresan, Backward fuzzy rule interpolation. IEEE Trans. Fuzzy Syst. 22(6), 1682–1698 (2014)Google Scholar
  5. 5.
    S. Jin, R. Diao, C. Quek, Q. Shen, Backward fuzzy rule interpolation with multiple missing values, in Proceedings of IEEE International Conference on Fuzzy Systems (2013), pp. 1–8Google Scholar
  6. 6.
    S. Jin, R. Diao, C. Quek, Q. Shen, Backward fuzzy interpolation and extrapolation with multiple multi-antecedent rules, in Proceedings of IEEE International Conference on Fuzzy Systems (2012), pp. 1170–1177Google Scholar
  7. 7.
    Z. Huang, Q. Shen, Fuzzy interpolative reasoning via scale and move transformations. IEEE Trans. Fuzzy Syst. 14(2), 340–359 (2006)CrossRefGoogle Scholar
  8. 8.
    Z. Huang, Q. Shen, Fuzzy interpolation and extrapolation: a practical approach. IEEE Trans. Fuzzy Syst. 16(1), 13–28 (2008)CrossRefGoogle Scholar
  9. 9.
    Z. Huang, Q. Shen, Adaptive fuzzy interpolation. IEEE Trans. Fuzzy Syst. 19(6), 1107–1126 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Wang, X. Zeng, J. Keane, Intermediate variable normalization for gradient descent learning for hierarchical fuzzy system. IEEE Trans. Fuzzy Syst. 17(2), 468–476 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Wang, X. Zeng, J. Keane, Analysis and design of hierarchical fuzzy systems. IEEE Trans. Fuzzy Syst. 7(5), 617–624 (1999)CrossRefGoogle Scholar
  12. 12.
    N. Naik, R. Diao, Q. Shen, Dynamic fuzzy rule interpolation and its application to intrusion detection. IEEE Trans. Fuzzy Syst. (2017)Google Scholar
  13. 13.
    T. Chen, C. Shang, P. Su, Q. Shen, Induction of accurate and interpretable fuzzy rules from preliminary crisp representation. Knowl. Based Syst. 146, 152–166 (2018)CrossRefGoogle Scholar
  14. 14.
    F. Li, C. Shang, Y. Li, J. Yang, Q. Shen, Fuzzy rule-based interpolative reasoning supported by attribute ranking, IEEE Trans. Fuzzy Syst. (2018)Google Scholar
  15. 15.
    T. Boongoen, C. Shang, N. Iam-On, Q. Shen, Extending data reliability measure to a filter approach for soft subspace clustering. IEEE Trans. Syst. Man Cybern Part B Cybern 41(6), 1705–1714 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Institute of Mathematics, Physics and Computer ScienceAberystwyth UniversityAberystwythUK

Personalised recommendations