Advertisement

Background: Fuzzy Rule Interpolation

  • Shangzhu Jin
  • Qiang Shen
  • Jun Peng
Chapter

Abstract

Conventional fuzzy reasoning methods such as Mamdani (Int J Man Mach Stud:7, 1975, [1]) and TSK (Fuzzy Sets Syst 28:15–33, 1988, [2], IEEE Trans Syst Man Cybern 1:116–132, 1985, [3]) require that the rule bases are dense. That is, the input universe of discourse is covered completely by the rule base.

References

  1. 1.
    E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7 (1975)Google Scholar
  2. 2.
    M. Sugeno, G. Kang, Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)CrossRefGoogle Scholar
  4. 4.
    T. Takagi, M. Sugeno, Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8(3), 253–283 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Koczy, K. Hirota, Approximate reasoning by linear rule interpolation and general approximation. Int. J. Approx. Reason. 9(3), 197–225 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Koczy, K. Hirota, Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases. Inf. Sci. 71(1–2), 169–201 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Z. Huang, Q. Shen, Fuzzy interpolative reasoning via scale and move transformations. IEEE Trans. Fuzzy Syst. 14(2), 340–359 (2006)CrossRefGoogle Scholar
  8. 8.
    L. Koczy, K. Hirota, Fuzzy interpolation and extrapolation: a practical approach. IEEE Trans. Fuzzy Syst. 16(1), 13–28 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Mizumoto, H.-J. Zimmermann, Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8(3), 253–283 (1982)MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Nakanishi, I. Turksen, M. Sugeno, A review and comparison of six reasoning methods. Fuzzy Sets Syst. 57(3), 257–294 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Kovács, Similarity based control strategy reconfiguration by fuzzy reasoning and fuzzy automata, in Proceedings of the IEEE Annual Conference on Industrial Electronics Society, vol. 1 (2000), pp. 542–547Google Scholar
  12. 12.
    S. Kovács, L.T. Kóczy, Application of interpolation-based fuzzy logic reasoning in behaviour-based control structures, in Proceedings of International Conference on Fuzzy Systems, vol. 3 (2004), pp. 1543–1548Google Scholar
  13. 13.
    S. Kovics, Fuzzy reasoning and fuzzy automata in user adaptive emotional and information retrieval systems, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 7 (2002), p. 6Google Scholar
  14. 14.
    K. Balázs, J. Botzheim, L. T. Kóczy, Comparative investigation of various evolutionary and memetic algorithms, in Computational Intelligence in Engineering. (Springer, 2010), pp. 129–140Google Scholar
  15. 15.
    Z.C. Johanyák, R. Parthiban, G. Sekaran, Fuzzy modeling for an anaerobic tapered fluidized bed reactor. Sci. Bull. Politeh. Univ. Timis. Rom. Trans. Autom. Control Comput. Sci. 52(66), 67–72 (2007)Google Scholar
  16. 16.
    K.W. Wong, D. Tikk, T.D. Gedeon, L.T. Kóczy, Fuzzy rule interpolation for multidimensional input spaces with applications: a case study. IEEE Trans. Fuzzy Syst. 13(6), 809–819 (2005)CrossRefGoogle Scholar
  17. 17.
    K.W. Wong, T.D. Gedeon, Fuzzy rule interpolation for multidimensional input space with petroleum engineering application, in Proceedings of IFSA World Congress and 20th NAFIPS International Conference, vol. 4 (2001), pp. 2470–2475Google Scholar
  18. 18.
    P. Baranyi, L.T. Kóczy, T.D. Gedeon, A generalized concept for fuzzy rule interpolation. IEEE Trans. Fuzzy Syst. 12(6), 820–837 (2004)CrossRefGoogle Scholar
  19. 19.
    B. Bouchon-Meunier, R. Mesiar, C. Marsala, M. Rifqi, Compositional rule of inference as an analogical scheme. Fuzzy Sets Syst. 138(1), 53–65 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Z.C. Johanyák, S. Kovács, A brief survey and comparison on various interpolation based fuzzy reasoning methods. Acta Polytech. Hung. 3(1), 91–105 (2006)Google Scholar
  21. 21.
    L.T. Koczy, S. Kovács, Linearity and the cnf property in linear fuzzy rule interpolation, in Proceedings of the Third IEEE Conference on Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence. (IEEE, 1994), pp. 870–875Google Scholar
  22. 22.
    S. Yan, M. Mizumoto, W.Z. Qiao, Reasoning conditions on koczy’s interpolative reasoning method in sparse fuzzy rule bases. Fuzzy Sets Syst. 75(1), 63–71 (1995)CrossRefGoogle Scholar
  23. 23.
    S. Chen, Y. Chang, Fuzzy rule interpolation based on the ratio of fuzziness of interval type-2 fuzzy sets. Expert Syst. Appl. 38(10), 12 202–12 213 (2011)Google Scholar
  24. 24.
    L. Lee, S. Chen, Fuzzy interpolative reasoning using interval type-2 fuzzy sets. New Front. Appl. Artif. Intell. 5027, 92–101 (2008)CrossRefGoogle Scholar
  25. 25.
    D.T.I.J.L.K.P.V.B.M.T. Gedeon, Stability of interpolative fuzzy kh controllers. Fuzzy Sets Syst. 125(1), 105–119 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    R.C. Lee, Fuzzy logic and the resolution principle. J. ACM (JACM) 19(1), 109–119 (1972)MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Robinson, A machine-oriented logic based on the resolution principle. J. ACM (JACM) 12(1), 23–41 (1965)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Z. Shen, L. Ding, M. Mukaidono, Fuzzy resolution principle, in Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic. (IEEE, 1988), pp. 210–215Google Scholar
  29. 29.
    L. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  30. 30.
    L. Koczy, K. Hirota, Fuzzy logic and approximate reasoning. Synthese 30(3–4), 407–428 (1975)Google Scholar
  31. 31.
    W. Hsiao, S. Chen, C. Lee, A new interpolative reasoning method in sparse rule-based systems. Fuzzy Sets Syst. 93(1), 17–22 (1998)MathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Baranyi, D. Tikk, T.D. Gedeon, L.T. Kóczy, \(\alpha \)-cut interpolation technique in the space of regular conclusion, in Proceedings of IEEE International Conference on Fuzzy Systems, vol. 1 (2000), pp. 478–482Google Scholar
  33. 33.
    P. Baranyi, D. Tikk, Y. Yam, L.T. Kóczy, L. Nadai, A new method for avoiding abnormal conclusion for \(\alpha \)-cut based rule interpolation, in Proceedings of IEEE International Conference on Fuzzy Systems, vol. 1 (1999), pp. 383–388Google Scholar
  34. 34.
    D. Tikk, P. Baranyi, Comprehensive analysis of a new fuzzy rule interpolation method. IEEE Trans. Fuzzy Syst. 8(3), 281–296 (2000)CrossRefGoogle Scholar
  35. 35.
    D. Tikk, P. Baranyi, T.D. Gedeon, L. Muresan, Generalization of the rule interpolation method resulting always in acceptable conclusion. Tatra Mt. Math. Publ 21, 73–91 (2001)MathSciNetzbMATHGoogle Scholar
  36. 36.
    D. Tikk, P. Baranyi, L.T. Kóczy, T.D. Gedeon, On a stable and always applicable interpolation method, in Proceedings of IEEE International Conference on Fuzzy Systems, vol. 2 (2000), pp. 1049–1051Google Scholar
  37. 37.
    D. Tikk, P. Baranyi, Y. Yam, L.T. Kóczy, On the preservation of piecewise linearity of a modified rule interpolation approach, in Proceedings of the EUROFUSE-SIC Conference (1999), pp. 550–555Google Scholar
  38. 38.
    L. Koczy, K. Hirota, Stability of a new interpolation method, in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 3 (1999), pp. 7–9Google Scholar
  39. 39.
    Y. Yam, L. Kóczy, Representing membership functions as points in high-dimensional spaces for fuzzy interpolation and extrapolation. IEEE Trans. Fuzzy Syst. 8(6), 761–772 (2000)CrossRefGoogle Scholar
  40. 40.
    T.D.G.K.W. Wong, D. Tikk, An improved multidimensional \(\alpha \)-cut based fuzzy interpolation technique, Conf Artificial Intelligence in Science and Technology (AISAT’2000) (2000), pp. 29–32Google Scholar
  41. 41.
    L.T.K. Sz, Kovács, Application of an approximate fuzzy logic controller in an agv steering system, path tracking and collision avoidance strategy. Fuzzy Set Theory Appl. Tatra Mt. Math. Publ., Math. Inst. Slovak Acad. Sci. 16, 456–467 (1999)Google Scholar
  42. 42.
    T. Deng, Y. Chen, W. Xu, Q. Dai, A novel approach to fuzzy rough sets based on a fuzzy covering. Inf. Sci. 177(11), 2308–2326 (2007)Google Scholar
  43. 43.
    S. Chen, Y. Ko, Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on \(\alpha \)-cuts and transformations techniques. IEEE Trans. Fuzzy Syst. 16(6), 1626–1648 (2008)CrossRefGoogle Scholar
  44. 44.
    L. Koczy, K. Hirota, Preserving piece-wise linearity in fuzzy interpolation, in Proceedings of IEEE International Conference on Fuzzy Systems (2009), pp. 575–580Google Scholar
  45. 45.
    S. Jenei, Interpolation and extrapolation of fuzzy quantities revisited—(i) an axiomatic approach. Soft. Comput. 5, 179–193 (2001)CrossRefGoogle Scholar
  46. 46.
    S. Jenei, E.-P. Klement, R. Konzel, Interpolation and extrapolation of fuzzy quantities-the multiple-dimensional case. Soft. Comput. 6(3–4), 258–270 (2002)CrossRefGoogle Scholar
  47. 47.
    L. Koczy, K. Hirota, Fuzzy rule interpolation based on polar cuts, in Computational Intelligence, Theory and Applications. (Springer, 2006), pp. 499–511Google Scholar
  48. 48.
    M.M.S. Yan, W.Z. Qiao, An improvement to kóczy and hirota’s interpolative reasoning in sparse fuzzy rule bases. Int. J. Approx. Reason. 15, 185–201 (1996)CrossRefGoogle Scholar
  49. 49.
    L. Ughetto, D. Dubois, H. Prade, Fuzzy interpolation by convex completion of sparse rule bases, in Proceedings of International Conference on Fuzzy Systems (2000), pp. 465–470Google Scholar
  50. 50.
    P. Baranyi, T.D. Gedeon, L.T. Kóczy, A general interpolation technique in fuzzy rule bases with arbitrary membership functions, in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 1 (1996), pp. 510–515Google Scholar
  51. 51.
    L. Ding, Z. Shen, M. Mukaidono, Revision principle for approximate reasoning, based on linear revising method, in Proceedings of the 2nd International Conference on Fuzzy Logic and Neural Networks (1992), pp. 305–308Google Scholar
  52. 52.
    D. Tikk, Z. Csaba Johanyák, S. Kovács, K.W. Wong, Fuzzy rule interpolation and extrapolation techniques: criteria and evaluation guidelines. J. Adv. Comput. Intell. Intell. Inform. 15(3), 254–263 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Institute of Mathematics, Physics and Computer ScienceAberystwyth UniversityAberystwythUK

Personalised recommendations