Advertisement

Introduction

  • Shangzhu Jin
  • Qiang Shen
  • Jun Peng
Chapter

Abstract

Approximate reasoning (AR) Shen and Leitch in IEEE Trans Syst Man Cybern 23:1038–1061 (1993), [1], Synthese 30:407–408 (1975), [2]) is a group of methodologies and techniques, which concentrate on the processing of inexact information containing imprecision and uncertainty in artificial intelligence (AI) and computational intelligence (CI).

References

  1. 1.
    Q. Shen, R. Leitch, Fuzzy qualitative simulation. IEEE Trans. Syst. Man Cybern. 23(4), 1038–1061 (1993)CrossRefGoogle Scholar
  2. 2.
    Q. Shen, R. Leitch, Fuzzy logic and approximate reasoning. Synthese 30(3–4), 407–428 (1975)Google Scholar
  3. 3.
    L. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  4. 4.
    L. Zadeh, Quantitative fuzzy semantics. Inf. Sci. 3(2), 159–176 (1971)MathSciNetCrossRefGoogle Scholar
  5. 5.
    G.F. Cooper, The computational complexity of probabilistic inference using bayesian belief networks. Artif. Intell. 42(2), 393–405 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Heckerman, D. Geiger, D.M. Chickering, Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)MATHGoogle Scholar
  7. 7.
    R.E. Neapolitan, Probabilistic Reasoning in Expert Systems: Theory and Algorithms (CreateSpace Independent Publishing Platform, 2012)Google Scholar
  8. 8.
    J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988)Google Scholar
  9. 9.
    C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, 1995)Google Scholar
  10. 10.
    S. Haykin, N. Network, A comprehensive foundation. Neural Netw. 2, 2004 (2004)Google Scholar
  11. 11.
    D. Neagu, V. Palade, A neuro-fuzzy approach for functional genomics data interpretation and analysis. Neural Comput. Appl. 12(3–4), 153–159 (2003)CrossRefGoogle Scholar
  12. 12.
    T.J. Ross, Fuzzy Logic with Engineering Applications (Wiley, 2009)Google Scholar
  13. 13.
    M. Sugeno, T. Yashukawa, A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993)CrossRefGoogle Scholar
  14. 14.
    T. Martin, Fuzzy sets in the fight against digital obesity. Fuzzy Sets Syst. 156(3), 411–417 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    L.-X. Wang, J.M. Mendel, Fuzzy basis functions, universal approximationand orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)CrossRefGoogle Scholar
  16. 16.
    X.-J. Zeng, J.A. Keane, Approximation capabilities of hierarchical fuzzy systems. IEEE Trans. Fuzzy Syst. 13, 659–672 (2005)CrossRefGoogle Scholar
  17. 17.
    J.J. Buckley, Sugeno type controllers are universal controllers. Fuzzy Sets Syst. 53(3), 299–303 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J.L. Castro, Fuzzy logic controllers are universal approximators. IEEE Trans. Syst. Man Cybern. 25(4), 629–635 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C.-C. Lee, Fuzzy logic in control systems: fuzzy logic controller I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)MathSciNetCrossRefGoogle Scholar
  20. 20.
    P.P. Angelov, X. Zhou, Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans. Fuzzy Syst. 16(6), 1462–1475 (2008)CrossRefGoogle Scholar
  21. 21.
    D. Nauck, R. Kruse, A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets Syst. 89(3), 277–288 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    H.M. Hersh, A. Caramazza, A fuzzy set approach to modifiers and vagueness in natural language. J. Exp. Psychol. Gen. 105(3), 254 (1976)CrossRefGoogle Scholar
  23. 23.
    F. Wang, Towards a natural language user interface: an approach of fuzzy query. Int. J. Geogr. Inf. Sci. 8(2), 143–162 (1994)CrossRefGoogle Scholar
  24. 24.
    F. Forsyth, Expert Systems Principles (Chapman & Hall Ltd., 1984)Google Scholar
  25. 25.
    M. Schneider, A. Kandel, G. Langholz, G. Chew, Fuzzy Expert System Tools (Wiley, 1996)Google Scholar
  26. 26.
    W. Cai, S. Chen, D. Zhang, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)CrossRefGoogle Scholar
  27. 27.
    Z. Chi, H. Yan, T. Pham, Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition, vol. 10 (World Scientific, 1996)Google Scholar
  28. 28.
    L. Kuncheva, F. Steimann, Fuzzy diagnosis. Artif. Intell. Med. 16(2), 121–128 (1999)CrossRefGoogle Scholar
  29. 29.
    H.-T. Yang, C.-C. Liao, Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers. IEEE Trans. Power Deliv. 14(4), 1342–1350 (1999)CrossRefGoogle Scholar
  30. 30.
    J.F.-F. Yao, J.-S. Yao, Fuzzy decision making for medical diagnosis based on fuzzy number and compositional rule of inference. Fuzzy Sets Syst. 120(2), 351–366 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    E.W. Ngai, F. Wat, Fuzzy decision support system for risk analysis in e-commerce development. Decis. Support Syst. 40(2), 235–255 (2005)CrossRefGoogle Scholar
  32. 32.
    H. Nokhbatolfoghahaayee, M.B. Menhaj, M. Shafiee, Fuzzy decision support system for crisis management with a new structure for decision making. Expert Syst. Appl. 37(5), 3545–3552 (2010)CrossRefGoogle Scholar
  33. 33.
    D. Petrovic, Y. Xie, K. Burnham, Fuzzy decision support system for demand forecasting with a learning mechanism. Fuzzy Sets Syst. 157(12), 1713–1725 (2006)MathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Barua, L.S. Mudunuri, O. Kosheleva, Why trapezoidal and triangular membership functions work so well: towards a theoretical explanation. (Departmental Technical Reports (CS) of University of Texas at El Paso, 2013). Paper 783Google Scholar
  35. 35.
    R.E. Giachetti, R.E. Young, Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation. Fuzzy Sets Syst. 91(1), 1–13 (1997)MathSciNetCrossRefGoogle Scholar
  36. 36.
    G. Feng, A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  37. 37.
    E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7 (1975)Google Scholar
  38. 38.
    S.E. Papadakis, J. Theocharis, A GA-based fuzzy modeling approach for generating TSK models. Fuzzy Sets Syst. 131(2), 121–152 (2002)MathSciNetCrossRefGoogle Scholar
  39. 39.
    S.E. Papadakis, J. Theocharis, Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. B 22(6), 1414–1427 (1992)MathSciNetCrossRefGoogle Scholar
  40. 40.
    W. Bandler, L. Kohout, Fuzzy power sets and fuzzy implication operators. Fuzzy Sets Syst. 4(1), 13–30 (1980)MathSciNetCrossRefGoogle Scholar
  41. 41.
    I.B. Turksen, Four methods of approximate reasoning with interval-valued fuzzy sets. Int. J. Approx. Reason. 3(2), 121–142 (1989)CrossRefGoogle Scholar
  42. 42.
    I. Turksen, Z. Zhong, An approximate analogical reasoning approach based on similarity measures. IEEE Trans. Syst. Man Cybern. 18(6), 1049–1056 (1988)CrossRefGoogle Scholar
  43. 43.
    R.R. Yager, An approach to inference in approximate reasoning. Int. J. Man Mach. Stud. 13(3), 323–338 (1980)MathSciNetCrossRefGoogle Scholar
  44. 44.
    E.P. Klement, R. Mesiar, E. Pap, Triangular norms: position paper I: basic analytical and algebraic properties. Fuzzy Sets Syst. 143(1), 5–26 (2004)CrossRefGoogle Scholar
  45. 45.
    M. Mizumoto, H.-J. Zimmermann, Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8(3), 253–283 (1982)MathSciNetCrossRefGoogle Scholar
  46. 46.
    H. Nakanishi, I. Turksen, M. Sugeno, A review and comparison of six reasoning methods. Fuzzy Sets Syst. 57(3), 257–294 (1993)MathSciNetCrossRefGoogle Scholar
  47. 47.
    E.H. Mamdani, Application of fuzzy algorithms for control of a simple dynamic plant. Proc. Inst. Electr. Eng. 121, 1585–1588 (1974)CrossRefGoogle Scholar
  48. 48.
    J. Canada-Bago, J. Fernandez-Prieto, M. Gadeo-Martos, J. Velasco, A new collaborative knowledge-based approach for wireless sensor networks. Sensors (Basel, Switzerland) 10(6), 6044–6062 (2010)CrossRefGoogle Scholar
  49. 49.
    C. Santos, F. Espinosa, D. Pizarro, F. ValdeÌĄs, E. Santiso, I. DiÌĄaz, Fuzzy decentralized control for guidance of a convoy of robots in non-linear trajectories, in 2010 IEEE Conference on Emerging Technologies and Factory Automation (ETFA) (2010), pp. 1–8Google Scholar
  50. 50.
    B. Moser, M. Navara, Fuzzy controllers with conditionally firing rules. IEEE Trans. Fuzzy Syst. 10(3), 340–348 (2002)CrossRefGoogle Scholar
  51. 51.
    J. Casillas, Interpretability Issues in Fuzzy Modeling, vol. 128 (Springer, 2003)Google Scholar
  52. 52.
    J. Yen, L. Wang, C.W. Gillespie, Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans. Fuzzy Syst. 6(4), 530–537 (1998)CrossRefGoogle Scholar
  53. 53.
    L.J. Herrera, H. Pomares, I. Rojas, O. Valenzuela, A. Prieto, Tase, a taylor series-based fuzzy system model that combines interpretability and accuracy. Fuzzy Sets Syst. 153(3), 403–427 (2005)MathSciNetCrossRefGoogle Scholar
  54. 54.
    F. Hoffmann, D. Schauten, S. Holemann, Incremental evolutionary design of TSK fuzzy controllers. IEEE Trans. Fuzzy Syst. 15(4), 563–577 (2007)CrossRefGoogle Scholar
  55. 55.
    F. Hoffmann, D. Schauten, S. Holemann, An approximate analogical reasoning schema based on similarity measures and interval-valued fuzzy sets. Fuzzy Sets Syst. 34(3), 323–346 (1990)CrossRefGoogle Scholar
  56. 56.
    M. Azzeh, D. Neagu, P.I. Cowling, Fuzzy grey relational analysis for software effort estimation. Empir. Softw. Eng. 15(1), 60–90 (2010)CrossRefGoogle Scholar
  57. 57.
    M. Azzeh, D. Neagu, P.I. Cowling, Analogy-based software effort estimation using fuzzy numbers. J. Syst. Softw. 84(2), 270–284 (2011)CrossRefGoogle Scholar
  58. 58.
    S.-M. Chen, A new approach to handling fuzzy decision-making problems. IEEE Trans. Syst. Man Cybern. 18(6), 1012–1016 (1988)CrossRefGoogle Scholar
  59. 59.
    M.-G. Chun, A similarity-based bidirectional approximate reasoning method for decision-making systems. Fuzzy Sets Syst. 117(2), 269–278 (2001)MathSciNetCrossRefGoogle Scholar
  60. 60.
    S. Raha, N.R. Pal, K.S. Ray, Similarity-based approximate reasoning: methodology and application. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 32(4), 541–547 (2002)CrossRefGoogle Scholar
  61. 61.
    S. Raha, N.R. Pal, K.S. Ray, Improved fuzzy knowledge representation and rule evaluation using fuzzy petri nets and degree of subsethood. Int. J. Intell. Syst. 9(12), 1083–1100 (1994)CrossRefGoogle Scholar
  62. 62.
    R.L. Goldstone, D.L. Medin, D. Gentner, Relational similarity and the nonindependence of features in similarity judgments. Cogn. Psychol. 23(2), 222–262 (1991)CrossRefGoogle Scholar
  63. 63.
    S.-M. Chen, Y.-K. Ko, Y.-C. Chang, J.-S. Pan, Weighted fuzzy interpolative reasoning based on weighted increment transformation and weighted ratio transformation techniques. IEEE Trans. Fuzzy Syst. 17(6), 1412–1427 (2009)CrossRefGoogle Scholar
  64. 64.
    D. Yeung, E. Tsang, Fuzzy knowledge representation and reasoning using petri nets. Expert Syst. Appl. 7(2), 281–289 (1994)CrossRefGoogle Scholar
  65. 65.
    B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence/Book and Disk, vol. 1 (Prentice Hall, 1992)Google Scholar
  66. 66.
    D. Yeung, E. Ysang, A multilevel weighted fuzzy reasoning algorithm for expert systems. IEEE Trans. Syst. Man Cybern. B 28(2), 149–158 (1998)CrossRefGoogle Scholar
  67. 67.
    U. Kaymak, R. Babuska, Compatible cluster merging for fuzzy modeling, in Proceedings of the FUZZ-IEEE/IFES95 (1995), pp. 897–904Google Scholar
  68. 68.
    B. Song, R. Marks, S. Oh, P. Arabshahi, T. Caudell, J. Choi et al., Adaptive membership function fusion and annihilation in fuzzy if-then rules, in Second IEEE International Conference on Fuzzy Systems, IEEE (1993), pp. 961–967Google Scholar
  69. 69.
    C. Sun, Rule-base structure identification in an adaptive-network-based fuzzy inference system. IEEE Trans. Fuzzy Syst. 2(1), 64–73 (1994)MathSciNetCrossRefGoogle Scholar
  70. 70.
    M.L.F. Herrera, J. Verdegay, Tackling real-coded genetic algorithm: operators and tools for behavioral analysis. Artif. Intell. Rev. 12, 265–319 (1998)CrossRefGoogle Scholar
  71. 71.
    J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function (Plenum, New York, 1981)CrossRefGoogle Scholar
  72. 72.
    G. Raju, J. Zhou, Adaptive hierarchical fuzzy controller. IEEE Trans. Syst. Man Cybern. 23(4), 973–980 (1993)CrossRefGoogle Scholar
  73. 73.
    G. Raju, J. Zhou, A. Roger, Hierarchical fuzzy control. Int. J. Control 54(5), 1201–1216 (1991)Google Scholar
  74. 74.
    L. Wang, Universal approximation by hierarchical fuzzy systems. Fuzzy Sets Syst. 93(2), 223–230 (1998)MathSciNetCrossRefGoogle Scholar
  75. 75.
    L. Wang, Size reduction by interpolation in fuzzy rule bases. IEEE Trans. Syst. Man Cybern. B 27(1), 14–25 (1997)CrossRefGoogle Scholar
  76. 76.
    K.W. Wong, D. Tikk, T.D. Gedeon, L.T. Kóczy, Fuzzy rule interpolation for multidimensional input spaces with applications: a case study. IEEE Trans. Fuzzy Syst. 13(6), 809–819 (2005)CrossRefGoogle Scholar
  77. 77.
    D.G. Burkhardt, P.P. Bonissone, Automated fuzzy knowledge base generation and tuning, in IEEE International Conference on Fuzzy Systems, IEEE (1992), pp. 179–188Google Scholar
  78. 78.
    L. Kóczy, K. Hirota, Approximate inference in hierarchical structured rule bases, in Proceedings of 5th IFSA World Congress (IFSA93) (1993), pp. 1262–1265Google Scholar
  79. 79.
    L. Kóczy, K. Hirota, Comparison of fuzzy reasoning methods. Fuzzy Sets Syst. 8(3), 253–283 (1982)MathSciNetCrossRefGoogle Scholar
  80. 80.
    L. Koczy, K. Hirota, Approximate reasoning by linear rule interpolation and general approximation. Int. J. Approx. Reason. 9(3), 197–225 (1993)MathSciNetCrossRefGoogle Scholar
  81. 81.
    L. Koczy, K. Hirota, Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases. Inf. Sci. 71(1–2), 169–201 (1993)MathSciNetCrossRefGoogle Scholar
  82. 82.
    P. Baranyi, L.T. Kóczy, T.D. Gedeon, A generalized concept for fuzzy rule interpolation. IEEE Trans. Fuzzy Syst. 12(6), 820–837 (2004)CrossRefGoogle Scholar
  83. 83.
    S. Chen, Y. Ko, Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on \(\alpha \)-cuts and transformations techniques. IEEE Trans. Fuzzy Syst. 16(6), 1626–1648 (2008)CrossRefGoogle Scholar
  84. 84.
    D. Dubois, H. Prade, On fuzzy interpolation*. Int. J. Gen. Syst. 28(2–3), 103–114 (1999)MathSciNetCrossRefGoogle Scholar
  85. 85.
    W. Hsiao, S. Chen, C. Lee, A new interpolative reasoning method in sparse rule-based systems. Fuzzy Sets Syst. 93(1), 17–22 (1998)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Z. Huang, Q. Shen, Fuzzy interpolative reasoning via scale and move transformations. IEEE Trans. Fuzzy Syst. 14(2), 340–359 (2006)CrossRefGoogle Scholar
  87. 87.
    Z. Huang, Q. Shen, Fuzzy interpolation and extrapolation: a practical approach. IEEE Trans. Fuzzy Syst. 16(1), 13–28 (2008)CrossRefGoogle Scholar
  88. 88.
    L.T. Kóczy, K. Hirota, L. Muresan, Interpolation in hierarchical fuzzy rule bases, in Proceedings of International Conference on Fuzzy Systems (2000), pp. 471–477Google Scholar
  89. 89.
    D. Tikk, P. Baranyi, Comprehensive analysis of a new fuzzy rule interpolation method. IEEE Trans. Fuzzy Syst. 8(3), 281–296 (2000)CrossRefGoogle Scholar
  90. 90.
    Y. Yam, L. Kóczy, Representing membership functions as points in high-dimensional spaces for fuzzy interpolation and extrapolation. IEEE Trans. Fuzzy Syst. 8(6), 761–772 (2000)CrossRefGoogle Scholar
  91. 91.
    Y. Yam, M. Wong, P. Baranyi, Interpolation with function space representation of membership functions. IEEE Trans. Fuzzy Syst. 14(3), 398–411 (2006)CrossRefGoogle Scholar
  92. 92.
    Y. Yam, M. Wong, P. Baranyi, Adaptive fuzzy interpolation. IEEE Trans. Fuzzy Syst. 19(6), 1107–1126 (2011)CrossRefGoogle Scholar
  93. 93.
    Y. Yam, M. Wong, P. Baranyi, Closed form fuzzy interpolation. Fuzzy Sets Syst. 225, 1–22 (2013)MathSciNetCrossRefGoogle Scholar
  94. 94.
    S. Kovács, Special issue on fuzzy rule interpolation. J. Adv. Comput. Intell. Intell. Inform. 253 (2011)Google Scholar
  95. 95.
    S. Jin, R. Diao, Q. Shen, Towards backward fuzzy rule interpolation, in Proceedings of the 11th UK Workshop on Computational Intelligence (UKCI2011) (2011), pp. 194–200Google Scholar
  96. 96.
    S. Jin, R. Diao, Q. Shen, Backward fuzzy interpolation and extrapolation with multiple multi-antecedent rules, in Proceedings of IEEE International Conference on Fuzzy Systems (2012), pp. 1170–1177Google Scholar
  97. 97.
    S. Jin, R. Diao, C. Quek, Q. Shen, Backward fuzzy rule interpolation with multiple missing values, in Proceedings of IEEE International Conference on Fuzzy Systems (2013), pp. 1–8Google Scholar
  98. 98.
    S. Jin, R. Diao, C. Quek, Q. Shen, Backward fuzzy rule interpolation. IEEE Trans. Fuzzy Syst. 22(6), 1682–1698 (2014)CrossRefGoogle Scholar
  99. 99.
    S. Jin, R. Diao, C. Quek, Q. Shen, a-cut-based backward fuzzy interpolation, in Proceedings of IEEE International Conference on Cognitive Informatics and Cognitive Computing (2014), pp. 211–218Google Scholar
  100. 100.
    S. Jin, R. Diao, C. Quek, Q. Shen, Terrorism risk assessment using bidirectional hierarchical fuzzy rule interpolation. Under Rev. Potential J Publ. (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Institute of Mathematics, Physics and Computer ScienceAberystwyth UniversityAberystwythUK

Personalised recommendations