Advertisement

Stabilometry to Evaluate Severity of Motion Sickness on Displays

  • Hiroki TakadaEmail author
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

Stereoscopic imaging techniques are used not only in amusement but also in the industrial, medical care, and educational fields; however, symptoms due to stereopsis have been reported. In this chapter, some bio-system and bio-mechanism are introduced although the overstimulation theory cannot explain the space motion sickness and this simulator sickness. We especially focus on the visual function as lens accommodation and the convergence and the vestibular system, which is considered to be sensitive to evaluate the severity of the motion sickness.

Keywords

Stabilometry Blurred images Stereopsis Visually induced motion sickness (VIMS) Liquid crystal display (LCD) Head-mounted display (HMD) Simulator sickness questionnaire (SSQ) 

References

  1. 1.
    Ukai K, Howarth PA. Visual fatigue caused by viewing stereoscopic motion images. Displays. 2008;29:106–16.CrossRefGoogle Scholar
  2. 2.
    Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Avi Psychol. 1993;3:203–20.CrossRefGoogle Scholar
  3. 3.
    Scibora LM, Villard S, Bardy B, Stoffregen TA. Wider stance reduces body sway and motion sickness. Proc VIMS. 2007;2007:18–23.Google Scholar
  4. 4.
    Himi N, Koga T, Nakamura E, Kobashi M, Yamane M, Tsujioka K. Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Auto Neurosci Basic Clin. 2004;116:46–53.CrossRefGoogle Scholar
  5. 5.
    Holomes SR, Griffin MJ. Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. J Psychophysiol. 2001;15:35–42.CrossRefGoogle Scholar
  6. 6.
    Yokota Y, Aoki M, Mizuta K. Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Otolaryngol. 2005;125:280–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Fujikake K, Miyao M, Honda R, Omori M, Matsuura Y, Takada H. Evaluation of high-quality LCDs displaying moving pictures, on the basis of the form obtained from Statokinesigrams. Forma. 2007;22(2):199–229.Google Scholar
  8. 8.
    Fujikake K, Takada H, Omori M, Miyao M. Evaluation of high-quality LCDs displaying moving pictures by use of the form obtained from Statokinesigrams and the dynamics. Forma. 2007;22(3):217–29.Google Scholar
  9. 9.
    Takada H, Miyao M, Fujikake K, Furuta M, Matsuura Y, Kitaoka Y. Effect of LCDs displaying blurred images on the postural control system. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 2008. 2008; p. 2149–52.Google Scholar
  10. 10.
    Takada H, Fujikake K, Omori M, Hasegawa S, Watanabe T, Miyao M. Reduction of body sway can be evaluated by sparse density during exposure to movies on liquid crystal displays. Proc Int Fed Med Biol Eng. 2009;23:987–91.Google Scholar
  11. 11.
    Takada H, Fujikake K, Miyao M. On a qualitative method to evaluate motion sickness induced by stereoscopic images on liquid crystal displays. Lect Notes Comput Sci. 2009;5622:254–62.CrossRefGoogle Scholar
  12. 12.
    Takada H, Matsuura Y, Takada M, Miyao M. Comparison in degree of the motion sickness induced by a 3-D movie on an LCD and an HMD. Lect Notes Comput Sci. 2011;6773:371–9.CrossRefGoogle Scholar
  13. 13.
    Takada H, Yamamoto T, Miyao M, Aoyama T, Furuta M, Shiozawa T. Effect of a stereoscopic movie on the correlation between head acceleration and body sway. Lect Notes Comput Sci. 2009;5622:120–7.CrossRefGoogle Scholar
  14. 14.
    Takada H, Yamamoto T, Sugiura A, Miyao M. Evaluation of motion sickness induced by stereoscopic images using head acceleration and body sway. In: Proceedings of the International Association for Development of the Information Society (IADIS) International Conferences, Web Virtual Reality and Three-Dimensional Worlds, 2010. 2010; p. 539–40.Google Scholar
  15. 15.
    Takada H, Fujikake K, Watanabe T, Hasegawa S, Omori M, Miyao M. A method for evaluating motion sickness induced by watching stereoscopic images on a head-mounted display. Proc SPIE-IS&T. 2009;SPIE7237(72371P):1–8.Google Scholar
  16. 16.
    Nishihara T, Tahara H. Apparatus for recovering eyesight utilizing stereoscopic video and method for displaying stereoscopic video. US Patent 7404639; 2008.Google Scholar
  17. 17.
    Takada M, Fukui Y, Matsuura Y, Sato M, Takada H. Peripheral viewing during exposure to a 2D/3D video clip: effects on the human body. Environ Health Prev Med. 2015;20(2):79–89.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Takada M, Miyao M, Takada H. Subjective evaluation of peripheral viewing during exposure to a 2D/3D video clip. Proc IEEE VR. 2015;2015:291–2.Google Scholar
  19. 19.
    Winter DA, Patla AE, Prince F, Ishac M. Stiffness control of balance in quiet standing. J Neurophysiol. 1998;80:1211–21.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gatev P, Thomas S, Kepple T, Hallett M. Feedforward ankle strategy of balance in quiet stance in adults. J Physiol. 1999;514:915–28.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Loram D, Kelly SM, Laike M. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance? J Physiol. 2001;523:879–91.CrossRefGoogle Scholar
  22. 22.
    Kaga K. Structure of Vertigo. Tokyo: Kanehara; 1992. p. 23–6. 95–100. (In Japanese).Google Scholar
  23. 23.
    Okawa T, Tokita T, Shibata Y, Ogawa T, Miyata H. Stabilometry: significance of locus length per unit area (L/A). Equilib Res. 1995;54:283–93.CrossRefGoogle Scholar
  24. 24.
    Grillner S, Georgopoulos AP, Jordan LM. Selection and initiation of motor behavior. In: Stein PSG, Grillner S, Selverston AI, et al., editors. Neurons, networks, and motor behavior. Cambridge: MIT Press; 1997. p. 3–19.Google Scholar
  25. 25.
    Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res. 2004;50:137–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol. 2008;255:19–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Kawada M, Inase M. Structure, function, and materials of the human body 8. Tokyo: Nihon Iji Shinpou; 2004. (In Japanese).Google Scholar
  28. 28.
    Fukuda H, Koga T, Furukawa N, Nakamura E, Shiroshita Y. The tachykinin NK1 receptor antagonist GR205171 abolishes the retching activity of neurons comprising the central pattern generator for vomiting in dogs. Neurosci Res. 1999;33(1):25–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Borison HL, Wang SC. Physiology and pharmacology of vomiting. Pharmacol Rev. 1953;5:193–230.PubMedGoogle Scholar
  30. 30.
    Wang SC. Physiology and pharmacology of the brain stem. New York: Futura; 1980.Google Scholar
  31. 31.
    Grahame-Smith DG. The multiple causes of vomiting: is there a common mechanism? In: Davis CJ, Lake-Baker GV, Grahame-Smith DG, editors. Nausea and vomiting: mechanisms and treatment. Heidelberg: Springer; 1986. p. 1–8.Google Scholar
  32. 32.
    Brizzee KR. Mechanics of vomiting: a mini review. Can J Physiol Pharmacol. 1990;68:221–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Carpenter DO. Neural mechanisms of emesis. Can J Physiol Pharmacol. 1990;68:230–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Korte GE. The brainstem projection of the vestibular nerve in cat. J Comp Neurol. 1979;184(2):279–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Tayler DB, Bard P. Motion sickness. Physiol Rev. 1949;29:311–69.CrossRefGoogle Scholar
  36. 36.
    Money KE. Motion sickness. Physiol Rev. 1970;50:1–39.PubMedCrossRefGoogle Scholar
  37. 37.
    Johnson WH, Jonkees LBW. Motion sickness. In: Kornhuber HH, editor. Handbook of sensory physiology, vol. vi/2. Heidelberg: Springer; 1974. p. 389–411.Google Scholar
  38. 38.
    Reason JT, Brand JJ. Motion sickness. London: Academic Press; 1975.Google Scholar
  39. 39.
    Benson AJ. Motion sickness. In: Dix MR, Hood JD, editors. Vertigo. New York: Wiley; 1984. p. 391–426.Google Scholar
  40. 40.
    Stott JRR. Mechanisms and treatment of motion illness. In: Davis CJ, Lake-Baker GV, Grahame-Smith DG, editors. Nausea and vomiting: mechanisms and treatment. Heidelberg: Springer; 1986. p. 110–29.CrossRefGoogle Scholar
  41. 41.
    Homick JL. Space motion sickness. Acta Astronaut. 1979;6:1259–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Graybiel A. Space motion sickness; Skylab revisited. Aviat Space Environ Med. 1980;51:814–22.PubMedGoogle Scholar
  43. 43.
    Talbot JM, Fisher KD. Space sickness. Physiologist. 1984;27:423–9.PubMedGoogle Scholar
  44. 44.
    Leich RJ, Daroff RB. Space motion sickness; etiological hypotheses and a proposal for diagnostic clinical examination. Aviat Space Environ Med. 1985;56:469–73.Google Scholar
  45. 45.
    Oman CM, Lichtenberg BK, Money KE, McCoy RK. MIT/Canadian vestibular experiments on Spacelab-1. Mission: 4. Space motion sickness; symptoms, stimuli and predictability. Exp Brain Res. 1986;64:316–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF. Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med. 1988;59:1185–9.PubMedGoogle Scholar
  47. 47.
    Reason JT. Motion sickness; a special case of sensory rearrangement. Adv Sci. 1970;26:386–93.PubMedGoogle Scholar
  48. 48.
    Kuypers HGJM. Anatomy of the descending pathways. In: Brooks VB, editor. Handbook of physiology, Sect. 1, vol. 2, motor control. Bethesda: American Physiological Society; 1981. p. 597–666.Google Scholar
  49. 49.
    Massion J. Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol. 1992;38:35–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Jones GM. Posture. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principle of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 816–31.Google Scholar
  51. 51.
    Xu JX, Sun Y. Modeling and analysis of the falling process based on a five-link gait model. CIS. 2012;40  https://doi.org/10.2316/Journal.201.2012.1.201-2319.
  52. 52.
    Okawa T, Tokita T, Shibata Y, Ogawa T, Miyata H. Stabilometry: significance of locus length per unit area (L/A) in patients with equilibrium disturbances. Equilib Res. 1995;54:283–93.CrossRefGoogle Scholar
  53. 53.
    Suzuki J, Matsunaga T, Tokumatsu K, Taguchi K, Watanabe Y. Q&A on stabilometry guidebook (1995). Equilib Res. 1996;55:64–77.CrossRefGoogle Scholar
  54. 54.
    Reason JT. Motion sickness adaptation. J Royal Soc Med. 1978;71:819–29.CrossRefGoogle Scholar
  55. 55.
    Stoffregen TA, Smart LJ. Postural instability precedes motion sickness. Brain Res Bull. 1998;47:437–48.PubMedCrossRefGoogle Scholar
  56. 56.
    Kimura K, Osumi Y, Nagai Y. CRT display visibility in automobiles. Ergonomics. 1990;33(6):707–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Scharff LFV, Ahumada AJ Jr. Predicting the readability of transparent text. J Vision. 2002;2(9):653–66.CrossRefGoogle Scholar
  58. 58.
    Scharff LFV, Hill AL, Ahumada AJ Jr. Discriminability measures for predicting readability of text on textured backgrounds. Opt Express. 2000;6(4):81–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Miyao M, Ishihara S, Furuta M, Kondo T, Sakakibara H, Kashiwamata M, Yamada S. Do liquid crystal displays assure better readability than cathode-ray tubes? Nippon Eiseigaku Zasshi. 1993;48(3):746–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Miyao M, Hacisalihzade SS, Allen JS, Stark LW. Effects of VDT resolution on visual fatigue and readability. Ergonomics. 1989;32(6):603–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Omori M, Watanabe T, Takada H, Miyao M. Readability and characteristics of the mobile phones for elderly people. Behav Inform Technol. 2002;21:313–6.CrossRefGoogle Scholar
  62. 62.
    Hasegawa S, Sato K, Matsunuma S, Miyao M, Okamoto K. Multilingual disaster information system. AI & Soc. 2005;19(3):265–78.CrossRefGoogle Scholar
  63. 63.
    Lestienne F, Soechting J, Berthoz A. Postural readjustments induced by linear motion of visual scenes. Exp Brain Res. 1977;28:363–84.PubMedGoogle Scholar
  64. 64.
    Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in Normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol. 1984;57:134–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Kirby RL, Price NA, Macleod DA. The influence of foot position on standing balance. J Biomech. 1987;20:423–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Norrē ME, Forrez G, Beckers A. Posturography measuring instability in vestibular dysfunction in the elderly. Age Ageing. 1987;16:89–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Hasan SS, Lichtenstein MJ, Shiavi RG. Effect of loss of balance on biomechanics platform measures of sway: influence of stance and a method for adjustment. J Biomech. 1990;23:783–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Takada H, Miyao M. Visual fatigue and motion sickness induced by 3D video clip. Forma. 2012;27:S67–76.Google Scholar
  69. 69.
    Oman C. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Suppl. 1982;392:1–44.PubMedGoogle Scholar
  70. 70.
    Stoffregen TA, Smart LJ, Bardy BJ, Pagulayan RJ. Postural stabilization of looking. J Exp Psychol Human Percept Perform. 1999;25:1641–58.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations