Advertisement

Production of High-Quality Biodiesel by Scenedesmus abundans

  • S. K. Mandotra
  • A. S. AhluwaliaEmail author
  • P. W. Ramteke
Chapter

Abstract

The ever-increasing need of energy both in the domestic and industrial front has augmented the consumption of fossil fuel; consequently, complexity arises owing to exhausting fuel supplies and due to their contribution to climate change by the emission of large quantities of greenhouse gases. The renewable, economic, and carbon-neutral biofuel from algae has made it a promising feedstock that can curtail global dependency on rapidly depleting fossil fuel-based petro diesel. Moreover, higher biomass and cellular lipid accumulation competence and economic sustainability even in large-scale production make algae a better choice than other existing oil crops. There are quite a few studies reporting number of green microalgae as a potential feedstock for biofuel production. Accumulation of lipid in microalgae is species dependent, and in potential strains it ranges from 25% to 60% of dry cell weight, in modified growth conditions; however, some microalgae are reported to accumulate more than 60% of cellular lipid content. The present chapter is specifically aimed to review freshwater green microalga Scenedesmus abundans as a prospective feedstock for high-quality biofuel production.

Keywords

Algae Scenedesmus abundans Biofuel Biodiesel Biomass 

References

  1. 1.
    Alaswad A, Dassisti M, Prescott T, Olabi AG (2015) Technologies and developments of third generation biofuel production. Renew Sust Energ Rev 51:1446–1460CrossRefGoogle Scholar
  2. 2.
    Arias-Peñaranda MT, Cristiani-Urbina E, Montes-Horcasitas C, Esparza-Garcıa F, Torzillo G, Cañizares-Villanueva RO (2013) Scenedesmus incrassatulus CLHE-Si01: a potential source of renewable lipid for high quality biodiesel production. Bioresour Technol 140:158–164CrossRefGoogle Scholar
  3. 3.
    Bajhaiya AK, MandotraS K, AnsoliaA, Barsana A (2017) Recent advances in improving ecophysiology of microalgae for biofuels. In: Algal biofuels. Springer International Publishing, pp 141–162Google Scholar
  4. 4.
    Baunillo KE, Tan RS, Barros HR, Luque R (2012) Investigations on microalgal oil production from Arthrospira platensis: towards more sustainable biodiesel production. RSC Adv 2(30):11267–11272CrossRefGoogle Scholar
  5. 5.
    Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Chellamboli C, Perumalsamy M (2014) Application of response surface methodology for optimization of growth and lipids in Scenedesmus abundans using batch culture system. RSC Adv 4(42):22129–22140CrossRefGoogle Scholar
  7. 7.
    Chen L, Liu T, Zhang W, Chen X, Wang J (2012) Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 111:208–214CrossRefGoogle Scholar
  8. 8.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefGoogle Scholar
  9. 9.
    Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO 2 utilization of Nannochloropsis oculata in response to CO 2 aeration. Bioresour Technol 100(2):833–838CrossRefGoogle Scholar
  10. 10.
    Damiani MC, Popovich CA, Constenla D, Leonardi PI (2010) Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol 101(11):3801–3807CrossRefGoogle Scholar
  11. 11.
    Dasgupta CN, Suseela MR, Mandotra SK, Kumar P, Pandey MK, Toppo K, Lone JA (2015) Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Appl Energy 146:202–208CrossRefGoogle Scholar
  12. 12.
    Demirbaş A (2008) Production of biodiesel from algae oils. Energy Sources Part A 31(2):163–168CrossRefGoogle Scholar
  13. 13.
    Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT, (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biot 85(3):395–403Google Scholar
  14. 14.
    González-Garcinuño Á, Tabernero A, Sánchez-Álvarez JM, del Valle EMM, Galán MA (2014) Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea. Bioresour Technol 173:334–341CrossRefGoogle Scholar
  15. 15.
    Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274CrossRefGoogle Scholar
  16. 16.
    Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26(1):72–79CrossRefGoogle Scholar
  17. 17.
    Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252CrossRefGoogle Scholar
  18. 18.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639CrossRefGoogle Scholar
  19. 19.
    Knothe G (2012) Fuel properties of highly polyunsaturated fatty acid methyl esters. Prediction of fuel properties of algal biodiesel. Energy Fuel 26(8):5265–5273CrossRefGoogle Scholar
  20. 20.
    Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA, Das D (2016a) Recent developments on biofuels production from microalgae and macroalgae. Renew Sust Energ Rev 65:235–249CrossRefGoogle Scholar
  21. 21.
    Kumar P, Mandotra SK, Suseela MR, Toppo K, Joshi P (2016b) Characterization and transesterification of fresh water microalgal oil. Energy Sources Part A 38(6):857–864CrossRefGoogle Scholar
  22. 22.
    Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636CrossRefGoogle Scholar
  23. 23.
    Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25(1):311–318CrossRefGoogle Scholar
  24. 24.
    Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives–a mini review. Energy 78:104–113CrossRefGoogle Scholar
  25. 25.
    Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47CrossRefGoogle Scholar
  26. 26.
    Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramteke PW (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol 201:222–229CrossRefGoogle Scholar
  27. 27.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRefGoogle Scholar
  28. 28.
    Minowa T, Yokoyama SY, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738CrossRefGoogle Scholar
  29. 29.
    Muthuraj M, Palabhanvi B, Misra S, Kumar V, Sivalingavasu K, Das D (2013) Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. Photosynth Res 118(1–2):167–179CrossRefGoogle Scholar
  30. 30.
    Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19(6):711–718CrossRefGoogle Scholar
  31. 31.
    Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68CrossRefGoogle Scholar
  32. 32.
    Nigam S, Rai MP, Sharma R (2011) Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am J Biochem Biotechnol 7(3):124–129CrossRefGoogle Scholar
  33. 33.
    Pereira H, Barreira L, Custódio L, Alrokayan S, Mouffouk F, Varela J, Abu-Salah KM, Ben-Hamadou R (2013) Isolation and fatty acid profile of selected microalgae strains from the Red Sea for biofuel production. Energies 6(6):2773–2783CrossRefGoogle Scholar
  34. 34.
    Philipose MT (1967) Chlorococcales, vol 8. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  35. 35.
    Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V (2010) Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Techn Environ Policy 12(3):239–254CrossRefGoogle Scholar
  36. 36.
    Predojević Z, Škrbić B, Đurišić-Mladenović N (2012) Transesterification of linoleic and oleic sunflower oils to biodiesel using CaO as a solid base catalyst. J Serb Chem Soc 77(6):815–832CrossRefGoogle Scholar
  37. 37.
    Rabbani S, Beyer P, Lintig JV, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116(4):1239–1248CrossRefGoogle Scholar
  38. 38.
    Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3(3):182–187CrossRefGoogle Scholar
  39. 39.
    Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268CrossRefGoogle Scholar
  40. 40.
    Richmond A (ed) (2008) Handbook of microalgal culture: biotechnology and applied phycology. Wiley, New YorkGoogle Scholar
  41. 41.
    Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112CrossRefGoogle Scholar
  42. 42.
    Ruangsomboon S (2012) Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol 109:261–265CrossRefGoogle Scholar
  43. 43.
    Schnurr PJ, Espie GS, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344CrossRefGoogle Scholar
  44. 44.
    Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286CrossRefGoogle Scholar
  45. 45.
    Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580CrossRefGoogle Scholar
  46. 46.
    Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555CrossRefGoogle Scholar
  47. 47.
    Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20(3):245–251CrossRefGoogle Scholar
  48. 48.
    Spijkerman E, Wacker A (2011) Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles 15(5):597CrossRefGoogle Scholar
  49. 49.
    Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, Bugbee B, Wood BD, Seefeldt LC (2012) Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy Fuel 27(1):220–228CrossRefGoogle Scholar
  50. 50.
    Williams PJLB, Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. K. Mandotra
    • 1
  • A. S. Ahluwalia
    • 1
    Email author
  • P. W. Ramteke
    • 2
  1. 1.Department of BotanyPanjab UniversityChandigarhIndia
  2. 2.Department of Biological SciencesSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia

Personalised recommendations