STR Typing and Available Kits

  • Pankaj Shrivastava
  • Hirak Ranjan Dash
  • R. K. Kumawat
  • Ankit Srivastava
  • Jahangir Imam


This chapter describes a time-scale development of short tandem repeats (STRs) and STR-based DNA technology used in forensic DNA analysis. The text describes the subsequent advancements in the development of the STR multiplex systems. This sequential development in STR-based multiplex systems has increased efficiency, sensitivity, and inhibitor tolerance with improved buffers. The development of different variants of STR-based multiplex systems utilizing different variants including autosomal, mini-, Y-, and X-STRs has increased the flexibility and ease of the forensic DNA analyst. With the availability of genetic analyzers, utilizing sixth dye has created new possibilities toward availability of expanded STR multiplex without affecting the requirement of input DNA for PCR. Rapid PCR and application of next-generation sequencing are also discussed along with the already validated capillary electrophoresis technology.


STRs DNA analysis Y and X STRs Multiplex PCR Autosomal NGS 


  1. 1.
    Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445CrossRefGoogle Scholar
  2. 2.
    Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Sci New Ser 161:529–540Google Scholar
  3. 3.
    Primose SB (1998) Principles of genome analysis: a guide to mapping and sequencing DNA from different organisms, 2nd edn. Blackwell Science, MaldenGoogle Scholar
  4. 4.
    Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B Biochem Mol Biol 126:455–476CrossRefGoogle Scholar
  5. 5.
    Tautz D (1993) Notes on the definition and nomenclature of tandemly repetitive DNA sequences. In: DJ Pena (ed) DNA fingerprinting: state of the science. Birkhauser Verlag, Basel, pp 21–28CrossRefGoogle Scholar
  6. 6.
    Edwards AL, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746–756PubMedPubMedCentralGoogle Scholar
  7. 7.
    Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable minisatellite regions in human DNA. Nature 314:67–73CrossRefGoogle Scholar
  8. 8.
    Kimpton CP, Gill P, Walton A, Urquhart A, Millican ES, Adams M (1993) Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl 3:13–22CrossRefGoogle Scholar
  9. 9.
    Roewer L (2013) DNA fingerprinting in forensics: past, present, future. Investig Genet 4:22CrossRefGoogle Scholar
  10. 10.
    Gill P, Fereday L, Morling N, Schneider PM (2006) The evolution of DNA databases – recommendations for new European STR loci. Forensic Sci Int 156:242–244CrossRefGoogle Scholar
  11. 11.
    Budowle B, Moretti TR, Niezgoda SJ, Brown BL (1998) CODIS and PCR-based short tandem repeat loci: law enforcement tools. Proceedings of the 2nd European Symposium Human Ident Madison, WI: Promega Corporation, pp 73–88Google Scholar
  12. 12.
    Butler JM (2011). Advanced topics in forensic DNA typing: methodology. 1st edition eBook ISBN: 9780123878236 hardcover ISBN: 9780123745132Google Scholar
  13. 13.
    Gill P, Urquhart A, Millican E, Oldroyd N, Watson S, Sparkes R, Kimpton CP (1996) A new method of STR interpretation using inferential logic -development of a criminal intelligence database. Int J Legal Med 109:14–22CrossRefGoogle Scholar
  14. 14.
    Kimpton C, Fisher D, Watson S, Adams M, Urquhart A, Lygo J, et al (1994). Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. Int J Legal Med, 106: 302–311CrossRefGoogle Scholar
  15. 15.
    Lygo JE, Johnson PE, Holdaway DJ, Woodroffe S, Whitaker JP, Clayton TM et al (1994) The validation of short tandem repeat (STR) loci for use in forensic casework. Int J Legal Med 107:77–89CrossRefGoogle Scholar
  16. 16.
    Gill P, Sparkes R, Kimpton C (1997) Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci Int 89:185–197CrossRefGoogle Scholar
  17. 17.
    Kimpton CP, Oldroyd NJ, Watson SK, Frazier RR, Johnson PE, Millican ES, et al (1996). Validation of highly discriminating multiplex short tandem repeat amplification systems for individual identification. Electrophoresis, 17: 11283–93, 1283CrossRefGoogle Scholar
  18. 18.
    Sparkes R, Kimpton C, Gilbard S, Carne P, Andersen J, Oldroyd N, et al (1996a). The validation of a 7-locus multiplex STR test for use in forensic casework. (II), artefacts, casework studies and success rates. Int J Legal Med, 109: 195–204Google Scholar
  19. 19.
    Sparkes R, Kimpton C, Watson S, Oldroyd N, Clayton T, Barnett L, et al (1996b). The validation of a 7-locus multiplex STR test for use in forensic casework. (I). Mixtures, ageing, degradation and species studies. Int J Legal Med, 109: 186–194Google Scholar
  20. 20.
    Adrian L, Jennifer EL (2014) Forensic DNA profiling: state of the art. Res Rep Forensic Med Sci 4:25–36Google Scholar
  21. 21.
    Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, et al (2002). Validation of a 16-locus fluorescent multiplex system. J Forensic Sci, 47: 773–785CrossRefGoogle Scholar
  22. 22.
    Phillips C, Besada MG, Formoso LF, Magarinos MG, Santos C, Fondevila M, Ballard D, Court DS, Carracedo A, Lareu MV (2014) “New turns from old STaRs”: enhancing the capabilities of forensic short tandem repeat analysis. Electrophoresis 35:3173–3187CrossRefGoogle Scholar
  23. 23.
    Tan E, Turingan RS, Hogan C, Vasantgadkar S, Palombo L, Schumm JW, et al (2013). Fully integrated: fully automated generation of short tandem repeat profiles. Investig Genet, 4: 2041–2223CrossRefGoogle Scholar
  24. 24.
    Jovanovich S, Bogdan G, Belcinski R, Buscaino J, Burgi D, Butts ELR, et al (2015). Developmental validation of a fully integrated sample-to-profile rapid human identification system for processing single-source reference buccal samples. Forensic Sci Int Genet, 16: 181–194CrossRefGoogle Scholar
  25. 25.
    Hennessy LK, Mehendale N, Chear K, Jovanovich S, Williams S, Park C, et al (2014). Developmental validation of the GlobalFiler express kit a 24-marker STR assay, on the RapidHIT system. Forensic Sci Int Genet, 13: 247–258CrossRefGoogle Scholar
  26. 26.
    Salceda S, Barican A, Buscaino J, Goldman B, Klevenberg J, Kuhn M, Lehto D, Lin F, Nguyen P, Park C, Pearson F, Pittaro R, Salodkar S, Schueren R, Smith C, Troup C, Tsou D, Vangbo M, Wunderle J, King D (2017) Validation of a rapid DNA process with the RapidHIT ID system using GlobalFiler express chemistry, a platform optimized for decentralized testing environments. Forensic Sci Int Genet 28:21–34CrossRefGoogle Scholar
  27. 27.
    Moreno LI, Browna AL, Callaghan TF (2017) Internal validation of the DNAscan/ANDE rapid DNA. Analysis platform and its associated PowerPlex 16 high content DNA biochip cassette for use as an expert system with reference buccal swabs. Forensic Sci Int Genet 29:100–108CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pankaj Shrivastava
    • 1
  • Hirak Ranjan Dash
    • 1
  • R. K. Kumawat
    • 2
  • Ankit Srivastava
    • 3
  • Jahangir Imam
    • 4
  1. 1.DNA Fingerprinting Unit, State Forensic Science LaboratorySagarIndia
  2. 2.State Forensic Science LaboratoryJaipurIndia
  3. 3.Dr. A.P.J. Abdul Kalam Institute of Forensic ScienceBundelkhand UniversityJhansiIndia
  4. 4.DNA Fingerprinting Unit, State Forensic Science Laboratory, Department of Home, Jail and Disaster ManagementGovernment of JharkhandRanchiIndia

Personalised recommendations