DNA Fingerprinting: Discovery, Advancements, and Milestones

  • Jahangir Imam
  • Romana Reyaz
  • Ajay Kumar Rana
  • Vrijesh Kumar Yadav


The discovery of DNA fingerprinting is one of the most fascinating scientific discoveries till date. It is not only limited to the laboratory research but also showed a huge potential in forensic science and criminal justice system. It was one of the milestones in resolving crimes by exploring the polymorphism of human DNA in noncoding regions. Since its inception, DNA fingerprinting has taken a great leap in terms of advancements in technology, accuracy, and reliability of the results as well as rapidity of the process for its more efficient application in justice delivery systems. This has become the most valuable armory of the judiciary system to aid in the conviction of guilty as well as exoneration of the innocent. Advancement of DNA fingerprinting technique from RFLP to STR and now NGS has sped up the process of DNA profiling with better discriminating power among individuals with greater efficacy. In this prospect, the current chapter elaborately recapitulates the process of advancement in DNA fingerprinting describing the use of different STR kits, i.e., autosomal STRs, Y-STRs, X-STRs, miniSTRs, etc., for forensic applications. We have also highlighted the importance of SNPs and amalgamation of NGS kits in forensic application. Notably, the importance of wildlife forensic has been discussed for the identification of species as well as its geographic origin. Another important budding aspect of RNA-based identification of forensically relevant biological fluids has also been discussed in much detail.


DNA fingerprinting Criminal justice system STRs Forensic analysis 



The authors are thankful to the Director of State Forensic Science Laboratory, Ranchi, Jharkhand, for the support.


  1. 1.
    Benschop CC, Haned H, de Blaeij TJ, Meulenbroek AJ, Sijen T (2012) Assessment of mock cases involving complex low template DNA mixtures: a descriptive study. Forensic Sci Int Genet 6:697–707CrossRefGoogle Scholar
  2. 2.
    Benschop C, Haned H, Sijen T (2013) Consensus and pool profiles to assist in the analysis and interpretation of complex low template DNA mixtures. Int J Legal Med 127:11–23CrossRefGoogle Scholar
  3. 3.
    Bornman DM, Hester ME, Schuetter JM, Kasoji MD, Minard-Smith A, Barden CA et al (2012) Short-read, high throughput sequencing technology for STR genotyping. BioTechniques:1–6Google Scholar
  4. 4.
    Borsting C, Mauling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78. Scholar
  5. 5.
    Børsting C, Mogensen HS, Morling N (2013) Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples. Forensic Sci Int Genet 7:345–352CrossRefGoogle Scholar
  6. 6.
    Budowle B, van Daal A (2008) Forensically relevant SNP classes. BioTechniques 44:603–608CrossRefGoogle Scholar
  7. 7.
    Budowle B, van Daal A (2009) Extracting evidence from forensic DNA analyses: future molecular biology directions. Biotechniques 46:339–340CrossRefGoogle Scholar
  8. 8.
    Butler JM (2006) Genetics and genomics of core STR loci used in human identity testing. J Forensic Sci 51(2):253–265CrossRefGoogle Scholar
  9. 9.
    Butler JM (2010) Chapter 3: historical methods. In: Fundamentals of forensic DNA typing. Elsevier Academic Press, San Diego, pp 43–78CrossRefGoogle Scholar
  10. 10.
    Butler JM (2015) The future of forensic DNA analysis. Phil Trans R Sac B 370:20140252CrossRefGoogle Scholar
  11. 11.
    Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054Google Scholar
  12. 12.
    Chambers GK, Curtis C, Millar CD, Huynen L, Lambert DM (2014) DNA fingerprinting in zoology: past, present, future. Investig Genet 5:3CrossRefGoogle Scholar
  13. 13.
    Coble MD, Butler JM (2005) Characterization of new miniSTR loci to aid analysis of degraded DNA. J Forensic Sci 50:43–53CrossRefGoogle Scholar
  14. 14.
    Collins PJ, Hennessy LK, Leibelt CS, Roby RK, Reeder DJ, Foxall PA (2004) Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and amelogenin: the AmpFlSTR Identifiler PCR amplification kit. J Forensic Sci 49:1265–1277CrossRefGoogle Scholar
  15. 15.
    Crawford MH, Beaty KG (2013) DNA fingerprinting in anthropological genetics: past, present, future. Investig Genet 4:23CrossRefGoogle Scholar
  16. 16.
    Dauber EM, Kratzer A, Neuhuber F et al (2012) Germline mutations of STR-alleles include multistep mutations as denied by sequencing of repeat and flanking regions. Forensic Sci Int Genet 6:381–386CrossRefGoogle Scholar
  17. 17.
    Eichmann C, Parson W (2008) “Mitominis”: multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples. Int J Legal Med 122:385–388CrossRefGoogle Scholar
  18. 18.
    Freire-Aradas A, Fondevila M, Kriegel AK, Phillips C, Gill P et al (2012) A new SNP assay for identification of highly degraded human DNA. Forensic Sci Int Genet 6:341–349CrossRefGoogle Scholar
  19. 19.
    Gaensslen RE, Harris HA, Lee HC (2007) Introduction to forensics & criminalistics. McGraw-Hill Companies, Inc. USAGoogle Scholar
  20. 20.
    Ge J, Eisenberg A, Budowle B (2012) Developing criteria and data to determine best options for expanding the core CODIS loci. Investig Genet 3:1CrossRefGoogle Scholar
  21. 21.
    Giardina E, Spinella A, Novelli G (2011) Past, present and future of forensic DNA typing. Nanomedicine (Lond) 6:257–270CrossRefGoogle Scholar
  22. 22.
    Guha S, Kashyap VK (2006) Molecular identification of lizard by RAPD & FINS of mitochondrial 16s rRNA gene. Legal Med (Tokyo, Japan) 8(1):5–10CrossRefGoogle Scholar
  23. 23.
    Hanson EK, Ballantyne J (2013) Rapid and inexpensive body fluid identification by RNA profiling-based multiplex high resolution melt (HRM) analysis. F1000Res 2:281.
  24. 24.
    Hopwood AJ, Elliott K (2012) Forensic DNA research: keeping it real. Int J Legal Med 126(2):343–344CrossRefGoogle Scholar
  25. 25.
    Hudlow WR, Buoncristiani MR (2012) Development of a rapid, 96-well alkaline based differential DNA extraction method for sexual assault evidence. Forensic Sci Int Genet 6(1):1–16CrossRefGoogle Scholar
  26. 26.
    Imaizumi K et al (2007) Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int J Legal Med 121(3):184–191CrossRefGoogle Scholar
  27. 27.
    Ivanova NV, Clare EL, Borisenko AV (2012) DNA barcoding in mammals, methods. Mol biol (Clifton, NJ) 858:153–182Google Scholar
  28. 28.
    Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73CrossRefGoogle Scholar
  29. 29.
    Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79CrossRefGoogle Scholar
  30. 30.
    Jeffreys AJ, Wilson V, Thein SL (1985c) Individual-specific ‘fingerprints’ of human DNA. Nature 314:67–74CrossRefGoogle Scholar
  31. 31.
    Jiang X, He J, Jia F, Shen H, Zhao J et al (2012) An integrated system of ABO typing and multiplex STR testing for forensic DNA analysis. Forensci Sci Int Genet 6:785–797CrossRefGoogle Scholar
  32. 32.
    Jobling MA (2013) Curiosity in the genes: the DNA fingerprinting story. Investig Genet 4:20CrossRefGoogle Scholar
  33. 33.
    Johnson RN, Wilson-Wilde L, Linacre A (2014) Current and future directions of DNA in wildlife forensic science. Forensic Sci Int Genet 10:1–14CrossRefGoogle Scholar
  34. 34.
    Karlsson AO, Holmlund G (2007) Identification of mammal species using species-specific DNA pyrosequencing. Forensic Sci Int 173:16–20CrossRefGoogle Scholar
  35. 35.
    Kidd K et al. (2012a) Better SNPs for better forensics: ancestry, phenotype, and family identification. Poster presented at the National Institute of Justice (NIJ) annual meeting, Arlington VA, June 2012Google Scholar
  36. 36.
    Kidd KK et al (2012b) Expanding data and resources for forensic use of SNPs in individual identification. Forensic Sci Int Genet 6(5):646–652CrossRefGoogle Scholar
  37. 37.
    Kosoy R, Nassir R, Tian C et al (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30(1):69–78CrossRefGoogle Scholar
  38. 38.
    Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47:773–785CrossRefGoogle Scholar
  39. 39.
    Legendre M, Pochet N, Pak T, Verstrepen KJ (2007) Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res 17:1787–1796CrossRefGoogle Scholar
  40. 40.
    Lindenbergh A, de Pagter M, Ramdayal G et al (2012) A multiplex (m) RNA-profiling system for the forensic identification of body fluids and contact traces. Forensci Sci Int Genet 6:565–577CrossRefGoogle Scholar
  41. 41.
    Lou C, Cong B, Li S et al (2011) A SNaPshot assay for genotyping 44 individual identification single nucleotide polymorphisms. Electrophoresis 32:368–378CrossRefGoogle Scholar
  42. 42.
    Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659CrossRefGoogle Scholar
  43. 43.
    Matte M, Williams L, Frappier R, Newman J (2012) Prevalence and persistence of foreign DNA beneath fingernails. Forensic Sci Int Genet 6:236–243CrossRefGoogle Scholar
  44. 44.
    McDonald J, Lehman DC (2012) Forensic DNA analysis. Clin Lab Sci 25:109–113PubMedGoogle Scholar
  45. 45.
    McGraw SN, Keeler SP, Huffman JE (2013) Forensic DNA analysis of wildlife evidence. In: Jaiprakash S, Ray L (eds) Forensic DNA analysis (current practices and emerging technologies). ISBN 9781466571266Google Scholar
  46. 46.
    Moretti TR, Moreno LI, Smerick JB, Pignone ML, Hizon R et al (2016) Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic Sci Int Genet 25:175–181CrossRefGoogle Scholar
  47. 47.
    Mulero JJ, Hennessy LK (2013) Next-generation STR genotyping kits for forensic applications. In: Jaiprakash S, Ray L (eds) Forensic DNA analysis (Current practices and emerging technologies). ISBN 9781466571266Google Scholar
  48. 48.
    Mullaney JM, Mills RE, Pittard WS, Devine SE (2010) Small insertions and deletions (INDELs) in human genomes. Hum Mol Genet 19:R131CrossRefGoogle Scholar
  49. 49.
    Müller M, Sibbing U, Hohof C, Brinkmann B (2010) Haplotype-assisted characterization of germline mutations at short tandem repeat loci. Int J Legal Med 124:177–182CrossRefGoogle Scholar
  50. 50.
    Musgrave-Brown E, Ballard D, Balogh K et al (2007) Forensic validation of the SNPforID 52-plex assay. Forensic Sci Int Genet 1:186–190CrossRefGoogle Scholar
  51. 51.
    Nandinene MR, Prasad SPR, Goud CV, Negi DS, Nagaraju J, Gowrishankar J (2010) DNA-based identification of the victims of the Mangalore air crash of may 2010. Curr Sci 99:3Google Scholar
  52. 52.
    Osborne MJ, Christidis L, Norman JA (2002) Molecular phylogenetics of the Diprotodontia (kangaroos, wombats, koala, possums, and allies). Mol Phylogenet Evol 25(2):219–228CrossRefGoogle Scholar
  53. 53.
    Pakstis AJ, Speed WC, Fang R et al (2010) SNPs for a universal individual identification panel. Hum Genet 127:315–324CrossRefGoogle Scholar
  54. 54.
    Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311:392–394CrossRefGoogle Scholar
  55. 55.
    Polymeropoulos MH, Rath DS, Xiao H, Merrill CR (1992) Tetra nucleotide repeat polymorphism at the human beta-actin related pseudogene H-beta-ac-psi-2 (ACTBP2). Nucleic Acids Res 20:1432CrossRefGoogle Scholar
  56. 56.
    Pun KM et al (2009) Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis 30(6):1008–1014CrossRefGoogle Scholar
  57. 57.
    Ramel C (1997) Mini- and microsatellites. Environ Health Perspect 105(Suppl 4):781–789CrossRefGoogle Scholar
  58. 58.
    Richert NJ (2011) Swabbing firearms for handler’s DNA. J Forensic Sci 56(4):972–975CrossRefGoogle Scholar
  59. 59.
    Rolf B, Schurenkamp M, Junge A, Brinkmann B (1997) Sequence polymorphism at the tetranucleotide repeat of the human beta-actin related pseudogene H-beta-Acpsi-2 (ACTBP2) locus. Int J Legal Med 110:69–72CrossRefGoogle Scholar
  60. 60.
    Romeika JM, Yan F (2013) Recent advances in forensic DNA analysis. J Forensic Res S12:001. Scholar
  61. 61.
    Sanchez JJ, Phillips C, Børsting C et al (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27:1713–1724CrossRefGoogle Scholar
  62. 62.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. ProcNatl Acad Sci U S A 74:5463–5467CrossRefGoogle Scholar
  63. 63.
    Shewale JG, Qi L, Calandro LM (2012) Principles, practice, and evolution of capillary electrophoresis as a tool for forensic DNA analysis. Forensic Sci Rev 24(2):79–100PubMedGoogle Scholar
  64. 64.
    Shrivastava P, Jain T, Trivedi VB (2016) DNA fingerprinting: a substantial and imperative aid to forensic investigation. Eur J Forensic Sci 3:23. Scholar
  65. 65.
    Thomasma SM, Foran DR (2012) The influence of swabbing solutions on DNA recovery from touch samples. J Forensic Sci 58(2):465–469CrossRefGoogle Scholar
  66. 66.
    Tsukada KK, Takayanagi H, Asamura M, Ota FH (2002) Multiplex short tandem repeat typing in degraded samples using newly designed primers for the TH01, TPOX, CSF1PO, and vWA loci. Legal Med 4:239–245CrossRefGoogle Scholar
  67. 67.
    Van de Goor LHP, Panneman H, van Haeringen WA (2009) A proposal for standardization in forensic bovine DNA typing: allele nomenclature of 16 cattle-specific short tandem repeat loci. Anim Genet 40:630–636CrossRefGoogle Scholar
  68. 68.
    van den Berge M, Bhoelai B, Harteveld J, Matai A, Sijen T (2016) Advancing forensic RNA typing: on nontarget secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling. Forensic Sci Int Genet 20:119–129Google Scholar
  69. 69.
    Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D (2013) Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet 7:316–320CrossRefGoogle Scholar
  70. 70.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. (2001) The sequence of the human genome. Science 291: 1304–1351Google Scholar
  71. 71.
    Wang DY, Gopinath S, Lagace RE, Norona W, Hennessy LK et al (2015) Developmental validation of the GlobalFiler((R)) express PCR amplification kit: a 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci Int Genet 19:148–155CrossRefGoogle Scholar
  72. 72.
    Warshauer DH, Lin D, Hari K, Jain R, Davis C, Larue B et al (2013) STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data. Forensic Sci Int Genet 7:409–417CrossRefGoogle Scholar
  73. 73.
    Zagorski N (2006) Profile of Alec. J Jeffreys Proc Natl Acad Sci U S A 103:8918–8920CrossRefGoogle Scholar
  74. 74.
    Zech WD, Malik N, Thali M (2012) Applicability of DNA analysis on adhesive tape in forensic casework. J Forensic Sci 57:1036–1041CrossRefGoogle Scholar
  75. 75.
    Zietkiewicz E, Witt M, Daca P, Zebracka-Gala J, Goniewicz M, Jarzab B (2012) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 53:41–60CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jahangir Imam
    • 1
  • Romana Reyaz
    • 1
  • Ajay Kumar Rana
    • 1
  • Vrijesh Kumar Yadav
    • 1
  1. 1.DNA Fingerprinting Unit, State Forensic Science Laboratory, Department of Home, Jail and Disaster ManagementGovernment of JharkhandRanchiIndia

Personalised recommendations