Cerebral Malaria: Players in the Pathogenic Mechanism and Treatment Strategies

  • Hemlata Dwivedi
  • Renu Tripathi


Cerebral malaria (CM) is a major life-threatening disease caused by Plasmodium falciparum infection in humans. The complex pathogenic mechanisms underlying the fatal neurological complications of the disease are still not completely elucidated. The autopsy studies in fatal cases of human CM and advances in knowledge from various animal models have offered insight into the precise mechanism of the disease. The parasite sequestration in the brain microvascular endothelial cells and dysregulated host immune system together determine the pathophysiology of CM. Despite optimal treatment with antimalarials, 25% of the patients suffer from post-treatment neurological and cognitive deficits. In this review, we have discussed the components of the pathogenic mechanisms of CM and the current scenario of treatment.


Cerebral malaria Blood-brain barrier Cell adhesion molecules Monocytes Adjunct treatment Antimalarial 


  1. Armah H, Dodoo AK, Wiredu EK, Stiles JK, Adjei AA, Gyasi RK et al (2005a) High-level cerebellar expression of cytokines and adhesion molecules in fatal, paediatric, cerebral malaria. Ann Trop Med Parasitol 99:629–647CrossRefGoogle Scholar
  2. Armah H, Wired EK, Dodoo AK, Adjei AA, Tettey Y, Gyasi R (2005b) Cytokines and adhesion molecules expression in the brain in human cerebral malaria. Int J Environ Res Public Health 2:123–131CrossRefGoogle Scholar
  3. Baruch DI (1999) Adhesive receptors on malaria-parasitized red cells. Best Pract Res Clin Haematol 12:747–761CrossRefGoogle Scholar
  4. Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM et al (2007) Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics 119:e360–e366CrossRefGoogle Scholar
  5. Brown H, Turner G, Rogerson S, Tembo M, Mwenechanya J, Molyneux M et al (1999) Cytokine expression in the brain in human cerebral malaria. J Infect Dis 180(5):1742–1746CrossRefGoogle Scholar
  6. Casals-Pascual C, Idro R, Gicheru N, Gwer S, Kitsao B, Gitau E et al (2008) High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A 105(7):2634–2639CrossRefGoogle Scholar
  7. Charunwatthana P, Abul Faiz M, Ruangveerayut R et al (2009) N-acetylcysteine as adjunctive treatment in severe malaria: a randomized, double-blinded placebo-controlled clinical trial. Crit Care Med 37:516–522CrossRefGoogle Scholar
  8. Chattopadhyay R, Taneja T, Chakrabarti K, Pillai CR, Chitnis CE (2004) Molecular analysis of the cytoadherence phenotype of a Plasmodium falciparum field isolate that binds intercellular adhesion molecule-1. Mol Biochem Parasitol 133(2):255–265CrossRefGoogle Scholar
  9. Combes V, El-Assaad F, Faille D, Jambou R, Hunt NH, Grau GE (2010) Microvesiculation and cell interactions at the brain-endothelial interface in cerebral malaria pathogenesis. Prog Neurobiol 91:140–150CrossRefGoogle Scholar
  10. Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM et al (1997) Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89:287–296CrossRefGoogle Scholar
  11. Craig A, Scherf A (2001) Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115:129–143CrossRefGoogle Scholar
  12. Dalko E, Tchitchek N, Pays L, Herbert F, Cazenave PA, Ravindran B, Sharma S, Nataf S, Das B, Pied S (2016) Erythropoietin levels increase during cerebral malaria and correlate with heme, Interleukin-10 and tumor necrosis factor-alpha in India. PLoS One 11:e0158420CrossRefGoogle Scholar
  13. Das BK, Mishra S, Padhi PK, Manish R, Tripathy R, Sahoo PK et al (2003) Pentoxifylline adjunct improves prognosis of human cerebral malaria in adults. Trop Med Int Health 8:680–684CrossRefGoogle Scholar
  14. David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD (1983) Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoaderence of infected erythrocytes. Proc Natl Acad Sci U S A 80(16):5075–5079CrossRefGoogle Scholar
  15. Deininger MH, Kremsner PG, Meyermann R, Schluesener HJ (2000) Differential cellular accumulation of transforming growth factor-beta1, −beta2, and -beta3 in brains of patients who died with cerebral malaria. J Infect Dis 181(6):2111–2115CrossRefGoogle Scholar
  16. de Souza JB, Riley EM (2002) Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect 4(3):291–300Google Scholar
  17. Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D et al (2011) The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol 178:2146–2158CrossRefGoogle Scholar
  18. Emuchay CI, Usanga EA (1997) Increased platelet factor 3 activity in Plasmodium falciparum malaria. East Afr Med J 74:527–529PubMedGoogle Scholar
  19. Gazzinelli RT, Denkers EY (2006) Protozoan encounters with toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 6:895–906CrossRefGoogle Scholar
  20. Glushakova S, Busse BL, Garten M, Beck JR, Fairhurst RM, Goldberg DE, Zimmerberg J (2017) Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress. Sci Rep 7:12250. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gordeuk V, Thuma P, Brittenham G, McLaren C, Parry D, Backenstose A et al (1992) Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Engl J Med 327(21):1473–1477CrossRefGoogle Scholar
  22. Gordeuk VR, Loyevsky M (2002) Antimalarial effect of iron chelators. Adv Exp Med Biol 509:251–272CrossRefGoogle Scholar
  23. Griffiths MJ, Ndungu F, Baird KL, Muller DP, Marsh K, Newton CR (2001) Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 113(2):486–491CrossRefGoogle Scholar
  24. Heddini A, Chen Q, Obiero J, Kai O, Fernandez V, Marsh K et al (2001) Binding of Plasmodium falciparum-infected erythrocytes to soluble platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): frequent recognition by clinical isolates. Am J Trop Med Hyg 65:47–51CrossRefGoogle Scholar
  25. Ho M, White NJ (1999) Molecular mechanisms of cytoadherence in malaria. Am J Physiol 276:C1231–C1242CrossRefGoogle Scholar
  26. Howard RJ, Handunnetti SM, Hasler T, Gilladoga A, de Aguiar JC, Pasloske BL et al (1990) Surface molecules on Plasmodium falciparum-infected erythrocytes involved in adherence. Am J Trop Med Hyg 43:15–29CrossRefGoogle Scholar
  27. Hsieh F-L, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK (2016) The structural basis for CD36 binding by the malaria parasite. Nat Commun 7:12837Google Scholar
  28. John CC, Kutamba E, Mugarura K, Opoka RO (2010) Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev Anti-Infect Ther 8(9):997–1008CrossRefGoogle Scholar
  29. Lell B, Köhler C, Wamola B, Olola CH, Kivaya E, Kokwaro G, Wypij D, Mithwani S, Taylor TE, Kremsner PG, Newton CR (2010) Pentoxifylline as an adjunct therapy in children with cerebral malaria. Malar J 21:368–369CrossRefGoogle Scholar
  30. Looareesuwan S, Wilairatana P, Vannaphan S, Wanaratana V, Wenisch C, Aikawa M, Brittenham G, Graninger W, Wernsdorfer WH (1998) Pentoxifylline as an ancillary treatment for severe falciparum malaria in Thailand. Achieves Dis Child 58:348–353Google Scholar
  31. Looareesuwan S, Sjostrom L, Krudsood S, Wilairatana P, Porter RS, Hills F et al (1999) Polyclonal anti-tumor necrosis factor-alpha fab used as an ancillary treatment for severe malaria. Am J Trop Med Hyg 61(1):26–33CrossRefGoogle Scholar
  32. Loutan L, Plancherel C, Soulier-lauper M, Pascual M, Subilia L, Chevrolet JC, Unger PF, Grau GE (1992) Serum TNF in patients with severe malaria treated by exchange transfusion. Trop Med Parasitol 43:285–286PubMedGoogle Scholar
  33. Maitland K, Pamba A, English M, Peshu N, Marsh K, Newton C et al (2005) Randomized trial of volume expansion with albumin or saline in children with severe malaria: preliminary evidence of albumin benefit. Clin Infect Dis 40:538–545CrossRefGoogle Scholar
  34. Maneerat Y, Pongponratn E, Viriyavejakul P, Punpoowong B, Looareesuwan S, Udomsangpetch R (1999) Cytokines associated with pathology in the brain tissue of fatal malaria. Southeast Asian J Trop Med Public Health 30(4):643–649Google Scholar
  35. Martins YC, Carvalho LJ, Daniel-Ribeiro CT (2009) Challenges in the determination of early predictors of cerebral malaria: lessons from the human disease and the experimental murine models. Neuroimmunomodulation 16(2):134–145CrossRefGoogle Scholar
  36. Miller LH, Ackerman HC, Su XZ, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19:156–167CrossRefGoogle Scholar
  37. Mohanty D, Ghosh K, Pathare AV, Karnad D (2002) Deferiprone (L1) as an adjuvant therapy for Plasmodium falciparum malaria. Indian J Med Res 115:17–21Google Scholar
  38. Mohanty S, Mishra SK, Patnaik R, Dutt AK, Pradhan S, Das B, Patnaik J, Mohanty AK, Lee SJ, Dondorp AM (2011) Brain swelling and mannitol therapy in adult cerebral malaria: a randomized trial. Clin Infect Dis 53:349–355CrossRefGoogle Scholar
  39. Namutangula B, Ndeezi G, Byarugaba JS, Tumwine JK (2007) Mannitol as adjunct therapy for childhood cerebral malaria in Uganda: a randomized clinical trial. Malar J 24:138CrossRefGoogle Scholar
  40. Newbold C, Warn P, Black G, Berendt A, Craig A, Snow B et al (1997a) Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg 57(4):389–398CrossRefGoogle Scholar
  41. Newbold CI, Craig AG, Kyes S, Berendt AR, Snow RW, Peshu N et al (1997b) PfEMP1, polymorphism and pathogenesis. Ann Trop Med Parasitol 91(5):551–557CrossRefGoogle Scholar
  42. Ockenhouse CF, Tegoshi T, Maeno Y, Benjamin C, Ho M, Kan KE et al (1992) Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med 176:1183–1189CrossRefGoogle Scholar
  43. Pongponratn E, Turner GD, Day NP, Phu NH, Simpson JA, Stepniewska K et al (2003) An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 69:345–359CrossRefGoogle Scholar
  44. Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM et al (2012) Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 205:663–671CrossRefGoogle Scholar
  45. Pouvelle B, Matarazzo V, Jurzynski C, Nemeth J, Ramharter M, Rougon G, Gysin J (2007) Neural cell adhesion molecule, a new cytoadhesion receptor for Plasmodium falciparum-infected erythrocytes capable of aggregation. Infect Immun 75(7):3516–3522CrossRefGoogle Scholar
  46. Rampengan TH (1991) Cerebral malaria in children. Comparative study between heparin, dexamethasone and placebo. Paediatr Indones 31:59–66PubMedGoogle Scholar
  47. Reyburn H, Mbatia R, Drakeley C, Bruce J, Carneiro I, Olomi R et al (2005) Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. J Am Med Assoc 293:1461–1470CrossRefGoogle Scholar
  48. Riddle MS, Jeffery LJ, Sanders JH, Blazes DL (2002) Exchange transfusion as an adjunct therapy in severe Plasmodium falciparum malaria: a meta-analysis. Clin Infect Dis 1:1192–1198CrossRefGoogle Scholar
  49. Rogerson SJ, Reeder JC, Al-Yaman F, Brown GV (1994) Sulfated glycoconjugates as disrupters of Plasmodium falciparum erythrocyte rosettes. Am J Trop Med Hyg 51:198–203CrossRefGoogle Scholar
  50. Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, Wassmer SC (2015) Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches. Front Cell Infect Microbiol 5:75CrossRefGoogle Scholar
  51. Scott CS, Van Zyl D, Ho E, Ruivo L, Mendelow B, Coetzer TL (2002) Thrombocytopenia in patients with malaria: automated analysis of optical platelet counts and platelet clumps with the cell Dyn CD4000 analyser. Clin Lab Haematol 24:295–302CrossRefGoogle Scholar
  52. Sein KK, Maeno Y, Thuc HV, Anh TK, Aikawa M (1993) Differential sequestration of parasitized erythrocytes in the cerebrum and cerebellum in human cerebral malaria. Am J Trop Med Hyg 48:504–511CrossRefGoogle Scholar
  53. Seydel KB, Milner DA Jr, Kamiza SB, Molyneux ME, Taylor TE (2006) The distribution and intensity of parasite sequestration in comatose Malawian children. J Infect Dis 194:208–205CrossRefGoogle Scholar
  54. Seydel KB, Kampondeni SD, Valim C, Potchen MJ, Milner DA, Muwalo FW et al (2015) Brain swelling and death in children with cerebral malaria. N Engl J Med 372:1126–1137CrossRefGoogle Scholar
  55. Springer AL, Smith LM, Mackay DQ, Nelson SO, Smith JD (2004) Functional interdependence of the DBLbeta domain and c2 region for binding of the Plasmodium falciparum variant antigen to ICAM-1. Mol Biochem Parasitol 137:55–64CrossRefGoogle Scholar
  56. Srivastava K, Field DJ, Aggrey A, Yamakuchi M, Morrell CN (2010) Platelet factor 4 regulation of monocyte KLF4 in experimental cerebral malaria. PLoS One 5:e10413. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Taylor TE, Molyneux ME, Wirima JJ, Borgstein A, Goldring JD, Hommel M (1992) Intravenous immunoglobulin in the treatment of paediatric cerebral malaria. Clin Exp Immunol 90(3):357–362CrossRefGoogle Scholar
  58. Thuma PE, Mabeza GF, Biemba G, Bhat GJ, McLaren CE, Moyo VM, Zulu S, Khumalo H, Mabeza P, M’Hango A, Parry D, Poltera AA, Brittenham GM, Gordeuk VR (1998) Effect of iron chelation therapy on mortality in Zambian children with cerebral malaria. Trans R Soc Trop Med Hygeine 92:214–218CrossRefGoogle Scholar
  59. Tongren JE, Yang C, Collins WE, Sullivan JS, Lal AA, Xiao L (2000) Expression of proinflammatory cytokines in four regions of the brain in macaque mulatta (rhesus) monkeys infected with Plasmodium coatneyi. Am J Trop Med Hyg 62(4):530–534CrossRefGoogle Scholar
  60. Tse MT, Chakrabarti K, Gray C, Chitnis CE, Craig A (2004) Divergent binding sites on intercellular adhesion molecule-1 (ICAM-1) for variant Plasmodium falciparum isolates. Mol Microbiol 51:1039–1049CrossRefGoogle Scholar
  61. Udomsangpetch R, Reinhardt PH, Schollaardt T, Elliott JF, Kubes P, Ho M (1997) Promiscuity of clinical Plasmodium falciparum isolates for multiple adhesion molecules under flow conditions. J Immunol 158(9):4358–4364Google Scholar
  62. Van Hensbroek MB, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G et al (1996) The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis 174:1091–1097CrossRefGoogle Scholar
  63. Warrell DA (1997) Cerebral malaria: clinical features, pathophysiology and treatment. Ann Trop Med Parasitol 91:875–884PubMedGoogle Scholar
  64. Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M et al (2015) Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am J Trop Med Hyg 93(3 Suppl):42–56CrossRefGoogle Scholar
  65. Watt G, Jongsakul K, Ruangvirayuth R (2002) A pilot study of N-acetylcysteine as adjunctive therapy for severe malaria. Q J Med 95:285–290CrossRefGoogle Scholar
  66. White NJ (1996) The treatment of malaria. N Engl J Med 335(11):800–806CrossRefGoogle Scholar
  67. WHO (2015) World Malaria Report, WHO BulletinGoogle Scholar
  68. Yipp BG, Hickey MJ, Andonegui G, Murray AG, Looareesuwan S, Kubes P et al (2007) Differential roles of CD36, ICAM-1, and P-selectin in Plasmodium falciparum cytoadherence in vivo. Microcirculation 14:593–602CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hemlata Dwivedi
    • 1
    • 2
  • Renu Tripathi
    • 1
    • 2
  1. 1.Division of ParasitologyCSIR-Central Drug Research InstituteLucknowIndia
  2. 2.Academy of Scientific and Innovative ResearchNew DelhiIndia

Personalised recommendations