Advertisement

Therapeutically Targeting TGR5 and P2Y Receptors

  • Senthilkumar Rajagopal
  • Murugavel Ponnusamy
Chapter

Abstract

A few cell surface receptors of bile acids have been discovered so far. TGR5 is a membrane-bound G-protein-coupled receptor for bile acids that are found in several types of tissues types, including liver. TGR5 is involved in a number of important biological processes, such as controlling the energy balance, insulin and glucose homeostasis, inflammation, bile formation and secretion, intestinal motility and secretion, and bile acid -evoked itch and analgesia. The neurons of the enteric and central nervous system also express TGR5 and it is involved in the intestinal motility and detection of endogenous neurosteroids in response to bile acids. The role of TGR5 against metabolic, inflammatory and digestive diseases is becoming prominent and the agonists of TGR5 may promote energy expenditure and insulin release, inflammation, and promote colon transit. Many of the recent reviews have described the conditions in which TGR5 could be a promising new target for pharmaceutical agents. Hence, it becomes important to delineate how these agonists regulate TGR5. The expression and/or activities of P2Ys are highly altered in cells and tissues during the disease progression and more than one P2Ys are involved in many cases. The growing bodies of evidences from experimental and clinical studies emphasize the potential therapeutic value of members of P2Y. As they are considered to be a new therapeutic strategy, several pharmacological agents targeting P2Y receptors are presently available in the market and many of them are under clinical trials. This present chapter summarize the present knowledge on therapeutic significance of TGR5 and P2Y receptors and to reveal the plausible therapeutic use of agents targeting these receptors in the treatment of human diseases.

Keywords

Allosteric ligands Bile acids Glucose homeostasis Inflammation Metabolic diseases 

References

  1. Albalawi, F., Lu, W., Beckel, J., Lim, J., McCaughey, S., & Mitchell, C. (2017). The P2X7 receptor primes IL-1β and the NLRP3 inflammasome in astrocytes exposed to mechanical strain. Frontiers in Cellular Neuroscience, 11, 227.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alemi, F., Poole, D., Chiu, J., Schoonjans, K., Cattaruzza, F., Grider, J., Bunnett, N., & Corvera, C. (2013). The receptor TGR5 mediates the Prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology, 144, 145–154.PubMedCrossRefGoogle Scholar
  3. Bala, V., Rajagopal, S., Kumar, D. P., Nalli, A. D., Mahavadi, S., Sanyal, A. J., Grider, J. R., & Murthy, K. S. (2014). Release of GLP-1 and PYY in response to the activation of G-protein coupled bile acid receptor TGR5 is mediated by Epac/PLC e pathway and modulated by endogenous H2S. Frontiers in Physiology, 5, 1–11.CrossRefGoogle Scholar
  4. Bijvelds, M., Jorna, H., Verkade, H., Bot, A., Hofmann, F., Agellon, L., Sinaasappel, M., & de Jonge, H. (2005). Activation of CFTR by ASBT-mediated bile salt absorption. American Journal of Physiology; Gastrointestinal and Liver physiology, 289, G870–G879.PubMedCrossRefGoogle Scholar
  5. Bunnett, N., & Cottrell, G. (2010). Trafficking and signaling of G protein-coupled receptors in the nervous system: Implications for disease and therapy. CNS Neurological Disorders and Drug Targets, 9, 539–556.CrossRefGoogle Scholar
  6. Burch, L., & Picher, M. (2006). E-NTPDases in human airways: Regulation and relevance for chronic lung diseases. Purinergic Signalling, 2, 399–408.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Burnstock, G. (2016). Purinergic signalling in the gut. Advanced Experimental and Medical Biology, 891, 91–112.CrossRefGoogle Scholar
  8. Burnstock, G., & Loesch, A. (2017). Sympathetic innervation of the kidney in health and disease: Emphasis on the role of purinergic cotransmission. Auton Neuroscience, 204, 4–16.CrossRefGoogle Scholar
  9. Bourdon, D. M., Mahanty, S. K., Jacobson, K. A., Boyer, J. L., & Harden, T. K. (2006). (N)-methanocarba-2MeSADP (MRS2365) is a subtype-specific agonist that induces rapid desensitization of the P2Y1 receptor of human platelets. Journal of Thrombosis and Haemostasis, 4, 861–868.PubMedCrossRefGoogle Scholar
  10. Cattaneo, G., Podda, G., & Cattaneo, M. (2011). Recent advances on the studies of the platelet’s inhibition and aggregation. State of the art of new P2Y12 antagonists. Recent Progressive Medicine, 102, 150–155.Google Scholar
  11. Cattaneo, F., Guerra, G., Parisi, M., De Marinis, M., Tafuri, D., Cinelli, M., & Ammendola, R. (2014). Cell-surface receptors transactivation mediated by g protein-coupled receptors. International Journal of Molecular Sciences, 15, 19700–19728.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen, X., Lou, G., Meng, Z., & Huang, W. (2011). TGR5: A novel target for weight maintenance and glucose metabolism. Experimental Diabetes Research, 2011, 1–5.Google Scholar
  13. Chhatriwala, M., Gnana Ravi, G., Patel, R., Boyer, J., Jacobson, K., & Kendall Harden, T. (2004). Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analog. Journal of Pharmacology and Experimental Therapeutics, 311, 1038–1043.PubMedCrossRefGoogle Scholar
  14. Damman, P., Woudstra, P., Kuijt, W., de Winter, R., & James, S. (2012). P2Y12 platelet inhibition in clinical practice. Journal of Thrombosis and Thrombolysis, 33, 143–153.PubMedCrossRefGoogle Scholar
  15. Dawson, P. (2011). Role of the intestinal bile acid transporters in bile acid and drug disposition. Handbook of Experimental Pharmacology, 201, 169–203.CrossRefGoogle Scholar
  16. Delesque-Touchard, N., Pendaries, C., Volle-Challier, C., Millet, L., Salel, V., Hervé, C., Pflieger, A., Berthou-Soulie, L., Prades, C., Sorg, T., Jean-Marc, H., Savi, P., & Bono, F. (2014). Regulator of G-protein signaling 18 controls both platelet generation and function. PLOS One, 9(11), e113215.PubMedPubMedCentralCrossRefGoogle Scholar
  17. do Carmo, J., da Silva, A., Ebaady, S., Sessums, P., Abraham, R., Elmquist, J., Lowell, B., & Hall, J. (2014). Shp2 signaling in POMC neurons is important for leptin’s actions on blood pressure, energy balance, and glucose regulation. American Journal of Physiology: Regulatory and Integrative Compartive Physiology, 307, R1438–R1447.Google Scholar
  18. Dreisig, K., & Rahbek, B. (2016). A critical look at the function of the P2Y11 receptor. Purinergic Signalling, 12, 427–437.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Duboc, H., Taché, Y., & Hofmann, A. (2014). The bile acid TGR5 membrane receptor: From basic research to clinical application. Digestive Liver Diseases, 46, 302–312.CrossRefGoogle Scholar
  20. Dufer, M., Hörth, K., Krippeit-Drews, P., & Drews, G. (2012). The significance of the nuclear farnesoid X receptor (FXR) in beta cell function. Islets, 4, 333–338.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Evans, K., Budzik, B., Ross, S., Wisnoski, D., Jin, J., Rivero, R., Vimal, M., Szewczyk, G., Jayawickreme, C., Monco, D., Rimele, T., Armour, S., Weaver, S., Griffin, R., Tadepalli, S., Jeune, M., Shearer, T., Chen, Z., Chen, L., Anderson, D., Becherer, J., De Los Frailes, M., & Javier Colilla, F. (2009). Discovery of 3-Aryl-4-isoxazolecarboxamides as TGR5 receptor agonists. Journal of Medicinal Chemistry, 52, 7962–7965.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Faria, D., Schreiber, R., & Karl, K. (2009). CFTR is activated through stimulation of purinergic P2Y2 receptors. Pflügers Archiv – European Journal of Physiology, 457, 1373–1380.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Farret, A., Filhol, R., Linck, N., Manteghetti, M., Vignon, J., Gross, R., & Petit, P. (2006). P2Y receptor mediated modulation of insulin release by a novel generation of 2-substituted-5′-O-(1-boranotriphosphate)-adenosine analogues. Pharmaceutical Research, 23, 2665–2671.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gertzen, C., Spomer, L., Smits, S., Häussinger, D., Keitel, V., & Gohlke, H. (2015). Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. European Journal of Medicinal Chemistry, 104, 57–72.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gremmel, T., Yanachkov, I., Yanachkova, M., Wright, G., Wider, J., Vishnu, V., Michelson, A., Frelinger, A. I., & Przyklenk, K. (2016). Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis. Arteriosclerosis Thrombosis and Vascular Biology, 36, 501–509.CrossRefGoogle Scholar
  26. Guo, C., Chen, W., & Wang, Y. (2016). TGR5, not only a metabolic regulator. Frontiers in Physiology, 7, 646.PubMedPubMedCentralGoogle Scholar
  27. Hana, A., Deborah, M., & Ali, S. (2014). Secondary bile acids: An underrecognized cause of colon cancer. World Journal of Surgery Oncology, 12, 164.CrossRefGoogle Scholar
  28. Handelsman, Y. (2011). Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care, 34, S244–S250.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hauser, A., Attwood, M., Rask-Andersen, M., Schiöth, H., & Gloriam, D. (2017). Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16, 829–842.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hauser, A., Chavali, S., Ikuo, M., Leonie, J., Martemyanov, K., Gloriam, D., & MadanBabu, M. (2018). Pharmacogenomics of GPCR drug targets. Cell, 172, 41–54.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hill, M. (1990). Bile flow and colon cancer. Mutation Research, 238, 313–320.PubMedCrossRefGoogle Scholar
  32. Hochhauser, E., Cohen, R., Waldman, M., Maksin, A., Isak, A., Aravot, D., Jayasekara, P., Müller, C., Jacobson, K., & Shainberg, A. (2013). P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo. Purinergic Signalling, 9, 633–642.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hodge, R., & Nunez, D. (2016). Therapeutic potential of Takeda-G-protein-receptor-5 (TGR5) agonists. Hope or hype? Diabetes Obese and metabolism, 18, 439–443.CrossRefGoogle Scholar
  34. Ichikawa, R., Takayama, T., Yoneno, K., Kamada, N., Kitazume, M., Higuchi, H., Matsuoka, K., Watanabe, M., Itoh, H., Kanai, T., Hisamatsu, T., & Hibi, T. (2012). Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology, 136, 153–162.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jenkins, G., Cronin, J., Alhamdani, A., Rawat, N., D’souza, F., Thomas, T., Eltahir, Z., Griffiths, A., & Baxter, J. (2008). The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis, 23, 399–405.PubMedCrossRefGoogle Scholar
  36. Jiang, J., & Dingledine, R. (2013). Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends in Pharmacological Sciences, 34, 413–423.PubMedCrossRefGoogle Scholar
  37. Kaia, M., Tarjei, H., Ellen, K., CR, K., & Lea, T. (2014). Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line. Journal of Receptor and Signal Transduction, 35, 402–409.Google Scholar
  38. Kauffenstein, G., Tamareille, S., Prunier, F., Roy, C., Ayer, A., Toutain, B., Billaud, M., Isakson, B., Grimaud, L., Loufrani, L., Rousseau, P., Abraham, P., Procaccio, V., Monyer, H., de Wit, C., Boeynaems, J., Robaye, B., Kwak, B., & Henrion, D. (2016). Central role of P2Y6 UDP receptor in arteriolar myogenic tone. Arteriosclerosis Thrombsis and Vascular Biology, 36, 1598–1606.CrossRefGoogle Scholar
  39. Keitel, V., & Häussinger, D. (2011). TGR5 in the biliary tree. Digestive Diseases, 29, 45–47.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Keitel, V., Reinehr, R., Gatsios, P., Rupprecht, C., Görg, B., Selbach, O., Häussinger, D., & Kubitz, R. H. (2007). The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology, 45, 695–704.PubMedCrossRefGoogle Scholar
  41. Keitel, V., Spomer, L., Marin, J., Williams, R., Geenes, V., Kubitz, R., Haussinger, D., & Macias, R. (2013). Effect of maternal cholestasis on TGR5 expression in human and rat placenta at term. Placenta, 34, 810–816.PubMedCrossRefGoogle Scholar
  42. Khalid, S., Akram, U., Hassan, T., Nasim, A., & Jameel, A. (2017). Fully automated robust system to detect retinal edema, central serous Chorioretinopathy, and age related macular degeneration from optical coherence tomography images. Biomedical Research International, 2017, 7148245.CrossRefGoogle Scholar
  43. Kida, T., Tsubosaka, Y., Hori, M., Ozaki, H., & Murata, T. (2013). Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arteriosclerosis Thrombosis and Vascular Biology, 33, 1663–1669.CrossRefGoogle Scholar
  44. Kim, L., Mertens, A., Maarten, R., & Hannah, M. (2017). Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Frontiers in Neuroscience, 11, 1–9.Google Scholar
  45. Kumar, D. P., Senthilkumar, R., Sunila, M., Faridoddin, M., Grider, J., Murthy, K., & Sanyal, A. (2012). Activation of transmembrane bile acid receptor TGR5 stimulates both insulin gene transcription and insulin release in pancreatic b cells. Biochemical and Biophysical Research Communication, 427, 600–605.CrossRefGoogle Scholar
  46. Kwang-Hoon, S., Li, T., Owsley, E., Strom, S., & Chiang, J. (2009). Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression. Hepatology, 49, 297–305.CrossRefGoogle Scholar
  47. Lane, J., May, L., Parton, R., Sexton, P., & Christopoulos, A. (2017). A kinetic view of GPCR allostery and biased agonism. Nature: Chemical Biology, 13, 929–937.Google Scholar
  48. Lau, O., Samarawickrama, C., & Skalicky, S. (2014). P2Y2 receptor agonists for the treatment of dry eye disease: A review. Clinical Ophthalmology, 8, 327–334.PubMedGoogle Scholar
  49. Lavoie, B., Balemba, O., Godfrey, C., Watson, C., Vassileva, G., Corvera, C., Nelson, M., & Mawe, G. (2010). Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. Journal of Physiology, 588, 3295–3305.PubMedCrossRefGoogle Scholar
  50. Li, T., Holmstrom, S. R., Kir, S., Umetani, M., Schmidt, D., Kliewer, S., & Mangelsdorf, D. (2011). The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Molecular Endocrinology, 25, 1066–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lieu, T., Jayaweera, G., Zhao, P., Poole, D., Jensen, D., Grace, M., McIntyre, P., Bron, R., Wilson, Y., Krappitz, M., Haerteis, S., Korbmacher, C., Steinhoff, M., Nassini, R., Materazzi, S., Geppetti, P., Corvera, C., & Bunnett, N. (2014). The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology, 147, 1417–1428.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Masyuk, A., Huang, B., Radtke, B., Gajdos, G., Splinter, P., Masyuk, T., Gradilone, S., & LaRusso, N. (2013). Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. American Journal of Physiology: Gastrointestinal and Liver Physiology, 304, G1013–G1024.PubMedCrossRefGoogle Scholar
  53. Michal, H., Talia, W., & Moshe, L. (2018). Bile acid receptors and the kidney. Current Opinion in Nephrology and Hypertension, 27, 56–62.CrossRefGoogle Scholar
  54. Min-Chan, C., Yi-Ling, C., Tzu-Wen, W., Hui-Ping, H., & Ming-Derg, L. (2016). Membrane bile acid receptor TGR5 predicts good prognosis in ampullary adenocarcinoma patients with hyperbilirubinemia. Oncology Report, 36, 1997–2008.CrossRefGoogle Scholar
  55. Muller, D., Zimmering, M., & Roehr, C. C. (2004). Should nifedipine be used to counter low blood sugar levels in children with persistent hyperinsulinaemic hypoglycaemia? Archives of Disease in Childhood, 89, 83–85.PubMedPubMedCentralGoogle Scholar
  56. Negus, S. (2006). Some implications of receptor theory for in vivo assessment of agonists, antagonists and inverse agonists. Biochemical Pharmacology, 71, 1663–1670.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Nishida, M., Sato, Y., Uemura, A., Narita, Y., Tozaki-Saitoh, H., Nakaya, M., Ide, T., Suzuki, K., Inoue, K., Nagao, T., & Kurose, H. (2008). P2Y6 receptor-Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO Journal, 27, 3104–3115.PubMedCrossRefGoogle Scholar
  58. Pathak, P., Liu, H., Boehme, S., Xie, C., Krausz, K., Gonzalez, F., & Chiang, J. (2017). Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. Journal of Biological Chemistry, 292, 11055–11069.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Perino, A., Pols, T., Nomura, M., Stein, S., Pellicciari, R., & Schoonjans, K. (2014). TGR5 reduces macrophage migration through mTOR induced C/EBPbeta differential translation. Journal of Clinical Investigation, 124, 5424–5436.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Peterson, T., Camden, J., Wang, Y., Seye, C., Wood, W., Sun, G., Erb, L., Petris, M., & Weisman, G. (2010). P2Y2 nucleotide receptor-mediated responses in brain cells. Molecular Neurobiology, 41, 356–366.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Phelan, J., Jerry Reen, F., Caparros-Martin, J., O’Connor, R., & O’Gara, F. (2017). Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget, 8, 115376–115747.CrossRefGoogle Scholar
  62. Pols, T., Nomura, M., Harach, T., Lo Sasso, G., Oosterveer, M., Thomas, C., Rizzo, G., Gioiello, A., Adorini, L., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2011). TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cellular Metabolsim, 14, 747–757.CrossRefGoogle Scholar
  63. Pols, T., Eggink, H., & Soeters, M. (2014). TGR5 ligands as potential therapeutics in inflammatory diseases. International Journal of Interferon, Cytokine and Mediator Research, 6, 27–38.CrossRefGoogle Scholar
  64. Rajagopal, S., Nalli, A. D., Kumar, D. P., Bhattacharya, S., Wenhui, H., Mahavadi, S., Grider, J. R., & Murthy, K. S. (2015). Cytokine-induced S-Nitrosylation of soluble guanylyl cyclase and expression of phosphodiesterase 1A contribute to dysfunction of longitudinal smooth muscle relaxation. Journal of Pharmacology and Experimental Therapeutics, 352, 509–518.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Ricardo, J., Rodrigues, A., Tomé, R., & Cunha, A. (2015). ATP as a multi-target danger signal in the brain. Frontiers in Neuroscience, 9, 148.Google Scholar
  66. Rieg, T., Gerasimova, M., Boyer, J., Insel, P., & Vallon, V. (2011). P2Y2 receptor activation decreases blood pressure and increases renal Na+ excretion. American Journal of Physiology: Regulatory Integrative and Comparative Physiolog, 301, R510–R518.Google Scholar
  67. Riegel, B., Lee, C., & Dickson, V. (2011). Self care in patients with chronic heart failure. Nature Review: Cardiology, 8, 644–654.Google Scholar
  68. Sato, H., Antonio, M., Charles, T., Antimo, G., Mizuho, U., Hofmann, A., Régis, S., Schoonjans, K., Roberto, P., & Auwerx, J. (2008). Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure-activity relationships, and molecular modeling studies. Journal of Medical Chemistry, 51, 1831–1841.CrossRefGoogle Scholar
  69. Schwiebert, E., Liang, L., Nai-Lin, C., Richards, W., Olteanu, D., Welty, E., & Zsembery, A. (2005). Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets. Purinergic Signalling, 1, 299–310.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Shreiner, A., Kao, J., & Young, V. (2015). The gut microbiome in health and in disease. Current Opinion in Gateroenterology, 31, 69–75.CrossRefGoogle Scholar
  71. Sil, P., Wicklum, H., Surell, H., & Rada, A. (2017). Macrophage-derived IL-1β enhances monosodium urate crystal-triggered NET formation. Inflammation Research, 66, 227–237.PubMedCrossRefGoogle Scholar
  72. Sriram, K., & Insel, P. (2018). G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Molecular Pharmacology, 93, 251–258.PubMedCrossRefGoogle Scholar
  73. Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cellular Metabolsim, 10, 167–177.CrossRefGoogle Scholar
  74. Vauquelin, G., & Van Liefde, I. (2005). G protein-coupled receptors: A count of 1001 conformations. Fundamental and Clinical Pharmacology, 19, 45–56.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Wang, Y., Chen, W., Yu, D., Forman, B., & Huang, W. (2011). The g-protein coupled bile acid receptor, gpbar1 (tgr5), negatively regulates hepati inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated b cells (nf-kappab) in mice. Hepatology, 54, 1421–1432.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wang, J., Liu, S., Nie, Y., Wu, B., Wu, Q., Song, M., Tang, M., Xiao, L., Xu, P., Tan, X., Zhang, L., Li, G., Liang, S., & Zhang, C. (2015). Activation of P2X7 receptors decreases the proliferation of murine luteal cells. Reproductive Fertilization Development, 27, 1262–1271.CrossRefGoogle Scholar
  77. Wang, L., Cheng, K., Li, Y., Niu, C., Cheng, J., & Niu, H. (2017). Glycyrrhizic acid increases glucagon like peptide-1 secretion via TGR5 activation in type 1-like diabetic rats. Biomedicine Pharmacotheraphy, 95, 599–604.CrossRefGoogle Scholar
  78. Watanabe, H., Nagesh, C., Laver, D., Seok Hwang, H., Davies, S., Roach, D., Duff, H., Roden, D., Wilde, A., & Knollmann, B. (2009). Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nature Medicine, 15, 380–383.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wenker, I., Sobrinho, C., Takakura, A., Mulkey, D., & Moreira, T. (2013). P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension, 62, 263–273.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Whalen, E., Rajagopal, S., & Lefkowitz, R. (2011). Therapeutic potential of β -arrestin- and G protein-biased agonists. Trends in Molecular Medicine, 17, 126–139.PubMedCrossRefGoogle Scholar
  81. Wootten, D., Christopoulos, A., & Sexton, P. (2013). Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Review: Drug Discovery, 12, 630–644.Google Scholar
  82. Wu, L., Oshima, T., Fukui, H., Watari, J., & Miwa, I. (2017). Adenosine triphosphate induces P2Y2 activation and interleukin-8 release in human esophageal epithelial cells. Journal of Gastroenterology and Hepatology, 32, 1341–1347.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Yanguas-Casás, N., Barreda-Manso, M., Nieto-Sampedro, M., & Romero-Ramírez, L. (2017). TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 With Anti-Inflammatory Effects in Microglial Cells. Journal of Cell Physiology, 232, 2231–2245.CrossRefGoogle Scholar
  84. Yasuto, K., Kenjiro, S., Koji, N., & Tadashi, K. (2014). The Role of MicroRNAs in Ovarian Cancer. Biomedicine Research International, 2014, 249943.Google Scholar
  85. Yui, S., Kanamoto, R., & Saeki, T. (2008). Deoxycholic acid can induce apoptosis in the human colon cancer cell line HCT116 in the absence of Bax. Nutrition Cancer, 60, 91–96.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Zetterberg, F., & Svensson, P. (2016). State of affairs: Design and structure-activity relationships of reversible P2Y12 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 26, 2739–2754.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Senthilkumar Rajagopal
    • 1
  • Murugavel Ponnusamy
    • 2
  1. 1.Department of BiochemistryRayalaseema UniversityKurnoolIndia
  2. 2.Center for Developmental Cardiology, Institute for Translational MedicineQingdao UniversityQingdaoChina

Personalised recommendations