Advertisement

Overview of G-Protein Coupled Receptor

  • Senthilkumar Rajagopal
  • Murugavel Ponnusamy
Chapter

Abstract

G protein coupled receptors (GPCRs) are the largest family of membrane proteins in the human genome, and substantial sources of targets for many industries. During the past two decades, the growth of GPCRs biology is very remarkable. The important findings of the GPCRs includes, first GPCRs cloning, and the sequencing of the human genome revealing the size of the GPCRs family and the number of orphan GPCRs. The N-terminus of the GPCRs protein present outside of the cell and C-terminus appears inside of the cell and having seven transmembrane-spanning segments, the main feature of GPCRs. The different sets of ligands such as proteins, small molecules, hormones, drugs and photons can bind to GPCRs astoundingly in their N-terminus and formed a pocket in the extracellular and transmembrane domains. Indeed, the numbers of studies have shown that GPCRs regulation and signaling is not easy to analyze than originally visualized, and includes signaling through G protein independent pathways. Here we have given a detailed mechanism of signal transduction through GPCR/G proteins and their function and structure.

Keywords

G-protein α-helices Ligands Signaling pathway Transmembrane receptor 

References

  1. Ahn, S., Kim, J., Hara, M. R., Ren, X. R., & Lefkowitz, R. J. (2009). {beta}-Arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. Journal of Biological Chemistry, 284, 8855–8865.PubMedCrossRefGoogle Scholar
  2. Akekawatchai, C., Holland, J. D., Kochetkova, M., Wallace, J. C., & McColl, S. R. (2005). Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. Journal of Biological Chemistry, 280, 39701–39708.PubMedCrossRefGoogle Scholar
  3. Allen, S., Crown, S., & Handel, T. (2007). Chemokine: receptor structure, interactions, and antagonism. Annual Review of Immunology, 25, 787–820.PubMedCrossRefGoogle Scholar
  4. Avau, B., & Depoortere, I. (2016). The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiology (Oxford), 216, 407–420.CrossRefGoogle Scholar
  5. Beautrait, A., Paradis, J. S., Zimmerman, B., Giubilaro, J., Nikolajev, L., Armando, S., Kobayashi, H., Yamani, L., Namkung, Y., Heydenreich, F. M., Khoury, E., Audet, M., Roux, P. P., Veprintsev, D. B., Laporte, S. A., & Bouvier, M. (2017). A new inhibitor of the beta-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nature Communications, 8, 15054.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bunnett, N., & Cottrell, G. (2010). Trafficking and signaling of G protein-coupled receptors in the nervous system: implications for disease and therapy. CNS Neurological Disorders and Drug Targets, 9, 539–556.CrossRefGoogle Scholar
  7. Cabrera-Vera, T., Vanhauwe, J., Thomas, T., Medkova, M., Preininger, A., Mazzoni, M., & Hamm, H. (2003). Insights into G protein structure, function, and regulation. Endocrinology Review, 24, 765–781.CrossRefGoogle Scholar
  8. Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: an alternative approach to Huntington’s disease. Nature Review Neuroscience, 6, 919–930.CrossRefGoogle Scholar
  9. Chaplin, R., Thach, L., Hollenberg, M. D., Cao, Y., Little, P. J., & Kamato, D. (2017). Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors. Journal of Cell Communication and Signalling, 11, 117–125.CrossRefGoogle Scholar
  10. Cianfrocca, R., Tocci, P., Rosano, L., Caprara, V., Sestito, R., Di Castro, V., & Bagnato, A. (2016). Nuclear beta-arrestin1 is a critical cofactor of hypoxia-inducible factor-1alpha signaling in endothelin-1-induced ovarian tumor progression. Oncotarget, 7, 17790–17804.PubMedPubMedCentralCrossRefGoogle Scholar
  11. David, T., & Krzysztof, P. (2009). Chemokine receptors and other GPCRs. Current Opinion in HIV and AIDS, 4, 88–95.CrossRefGoogle Scholar
  12. Defea, K. (2008). Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. British Journal of Pharmacology, 153(Suppl 1), S298–S309.PubMedGoogle Scholar
  13. Digby, G., Lober, R., Sethi, P., & Lambert, N. (2006). Some G protein heterotrimers physically dissociate in living cells. Proceedings of the National Academy of Sciences USA, 103, 17789–17794.CrossRefGoogle Scholar
  14. Elling, C., Thirstrup, K., Nielsen, S., Hjorth, S., & Schwartz, T. (1997). Metal-ion sites as structural and functional probes of helix-helix interactions in 7TM receptors. Annual New York Academic of Sciences, 814, 142–151.CrossRefGoogle Scholar
  15. Ellis, C. (2004). The state of GPCR research in 2004. Nature Review: Drug Discovery, 3, 577–626.Google Scholar
  16. Flegel, C., Vogel, F., Hofreuter, A., Wojcik, S., Schoeder, C., Kiec-Kononowicz, K., Brockmeyer, N. H., Muller, C. E., Becker, C., Altmuller, J., Hatt, H., & Gisselmann, G. (2016). Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Science Report, 6, 32255.CrossRefGoogle Scholar
  17. Fuse, N., Yu, F., & Hirose, S. (2013). Gprk2 adjusts Fog signaling to organize cell movements in Drosophila gastrulation. Development, 140, 4246–4255.PubMedCrossRefGoogle Scholar
  18. Gaulton, A., & Attwood, T. (2003). Bioinformatics approaches for the classification of G-protein-coupled receptors. Current Opinion in Pharmacology, 3, 114–120.PubMedCrossRefGoogle Scholar
  19. Geng, F. S., Abbas, L., Baxendale, S., Holdsworth, C. J., Swanson, A. G., Slanchev, K., Hammerschmidt, M., Topczewski, J., & Whitfield, T. T. (2013). Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development, 140, 4362–4374.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Geng-Ming, H., Te-Lun, M., & Chi-Ming, C. (2017). Visualizing the GPCR Network: Classification and evolution. Scientific Reports, 7, 15495.CrossRefGoogle Scholar
  21. Godbole, A., Lyga, S., Lohse, M. J., & Calebiro, D. (2017). Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nature Communications, 8, 443.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hadi, T., Barrichon, M., Mourtialon, P., Wendremaire, M., Garrido, C., Sagot, P., Bardou, M., & Lirussi, F. (2013). Biphasic Erk1/2 activation sequentially involving Gs and Gi signaling is required in beta3-adrenergic receptor-induced primary smooth muscle cell proliferation. Biochimica Biophysica Acta, 1833, 1041–1051.CrossRefGoogle Scholar
  23. Hauser, A., Attwood, M., Rask-Andersen, M., Schiöth, H., & Gloriam, D. (2017). Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery, 16, 829–842.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hazell, G., Hindmarch, C., Pope, G., Roper, J., Lightman, S., Murphy, D., O'Carroll, A., & Lolait, S. (2012). G protein-coupled receptors in the hypothalamic paraventricular and supraoptic nuclei—Serpentine gateways to neuroendocrine homeostasis. Frontiers in Neuroendocrinology, 33, 45–66.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hilger, D., Masureel, M., & Kobilka, B. (2018). Structure and dynamics of GPCR signaling complexes. Nature: Structural and Molecular Biology, 25, 4–12.Google Scholar
  26. Hwang, S. H., & Mukhopadhyay, S. (2015). G-protein-coupled receptors and localized signaling in the primary cilium during ventral neural tube patterning. Birth Defects Research Clinical Molecular Teratology, 103, 12–19.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hwang, S. H., White, K. A., Somatilaka, B. N., Shelton, J. M., Richardson, J. A., & Mukhopadhyay, S. (2018). The G protein-coupled receptor Gpr161 regulates forelimb formation, limb patterning and skeletal morphogenesis in a primary cilium-dependent manner. Development, 145.CrossRefGoogle Scholar
  28. Irannejad, R., Tomshine, J. C., Tomshine, J. R., Chevalier, M., Mahoney, J. P., Steyaert, J., Rasmussen, S. G., Sunahara, R. K., El-Samad, H., Huang, B., & von Zastrow, M. (2013). Conformational biosensors reveal GPCR signalling from endosomes. Nature, 495, 534–538.PubMedCrossRefGoogle Scholar
  29. Jaggupilli, A., Howard, R., Upadhyaya, J., Bhullar, R., & Chelikani, P. (2016). Bitter taste receptors: Novel insights into the biochemistry and pharmacology. International Journal of Biochemistry and Cellular Biology, 77, 184–196.CrossRefGoogle Scholar
  30. Ji, T., Grossmann, M., & Ji, I. (1998). G protein-coupled receptors. I. Diversity of receptor-ligand interactions. Journal of Biological Chemistry, 273, 17299–17302.PubMedCrossRefGoogle Scholar
  31. Kakinuma, T., & Hwang, S. (2006). Chemokines, chemokine receptors, and cancer metastasis. Journal of Leukocyte Biology, 79, 639–651.PubMedCrossRefGoogle Scholar
  32. Kamato, D., Rostam, M. A., Bernard, R., Piva, T. J., Mantri, N., Guidone, D., Zheng, W., Osman, N., & Little, P. J. (2015). The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cellular and Molecular Life Sciences, 72, 799–808.PubMedCrossRefGoogle Scholar
  33. Katritch, V., Cherezov, V., & Stevens, R. C. (2012). Diversity and modularity of G protein-coupled receptor structures. Trends in Pharmacological Sciences, 33, 17–27.PubMedCrossRefGoogle Scholar
  34. Katritch, V., Cherezov, V., & Stevens, R. C. (2013). Structure-function of the G protein-coupled receptor superfamily. Annual Review of Pharmacology and Toxicology, 53, 531–556.PubMedCrossRefGoogle Scholar
  35. Knoflach, F., Mutel, V., Jolidon, S., Kew, J., Malherbe, P., Vieira, E., Wichmann, J., & Kemp, J. (2001). Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proceeding of Natural Acadmics of Sciences USA, 98, 13402–13407.CrossRefGoogle Scholar
  36. Kobilka, B. (2007). G Protein coupled receptor structure and activation. Biochemical and Biophysical Research Communication, 1768, 794–807.Google Scholar
  37. Kolakowski, L. (1994). GCRDb: a G-protein-coupled receptor database. Receptors and Channels, 2, 1–7.PubMedGoogle Scholar
  38. Krishnan, A., & Schiöth, H. (2015). The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. Journal of Experimental Biology, 218, 562–571.PubMedCrossRefGoogle Scholar
  39. Kunwar, P. S., Starz-Gaiano, M., Bainton, R. J., Heberlein, U., & Lehmann, R. (2003). Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS Biology, 1, E80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lai, S. L., Yao, W. L., Tsao, K. C., Houben, A. J., Albers, H. M., Ovaa, H., Moolenaar, W. H., & Lee, S. J. (2012). Autotaxin/Lpar3 signaling regulates Kupffer’s vesicle formation and left-right asymmetry in zebrafish. Development, 139, 4439–4448.PubMedCrossRefGoogle Scholar
  41. Lapinsh, M., Gutcaits, A., Prusis, P., Post, C., Lundstedt, T., & Wikberg, J. (2002). Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Protein Science, 11, 795–805.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Latorraca, N., Venkatakrishnan, A., & Dror, R. (2017). GPCR dynamics: structures in motion. Chemistry Review, 117, 139–155.CrossRefGoogle Scholar
  43. Ledent, C., Demeestere, I., Blum, D., Petermans, J., Hamalainen, T., Smits, G., & Vassart, G. (2005). Premature ovarian aging in mice deficient for Gpr3. Proceedings of the National Academy of Sciences, USA, 102, 8922–8926.CrossRefGoogle Scholar
  44. Leung, T., Humbert, J. E., Stauffer, A. M., Giger, K. E., Chen, H., Tsai, H. J., Wang, C., Mirshahi, T., & Robishaw, J. D. (2008). The orphan G protein-coupled receptor 161 is required for left-right patterning. Developmental Biology, 323, 31–40.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lohse, M. J. (2010). Dimerization in GPCR mobility and signaling. Current Opinion in Pharmacology, 10, 53–58.PubMedCrossRefGoogle Scholar
  46. Louwette, S., Van Geet, C., & Freson, K. (2012). Regulators of G protein signaling: role in hematopoiesis, megakaryopoiesis and platelet function. Journal of Thrombosis and Haemost, 10, 2215–2222.CrossRefGoogle Scholar
  47. Ma, L., & Pei, G. (2007). Beta-arrestin signaling and regulation of transcription. Journal of Cell Science, 120, 213–218.PubMedCrossRefGoogle Scholar
  48. Manning, A. J., Peters, K. A., Peifer, M., & Rogers, S. L. (2013). Regulation of epithelial morphogenesis by the G protein-coupled receptor mist and its ligand fog. Science Signaling, 6, ra98.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Martemyanov, K. A., Hopp, J. A., & Arshavsky, V. Y. (2003). Specificity of G protein-RGS protein recognition is regulated by affinity adapters. Neuron, 38, 857–862.PubMedCrossRefGoogle Scholar
  50. Matteson, P. G., Desai, J., Korstanje, R., Lazar, G., Borsuk, T. E., Rollins, J., Kadambi, S., Joseph, J., Rahman, T., Wink, J., Benayed, R., Paigen, B., & Millonig, J. H. (2008). The orphan G protein-coupled receptor, Gpr161, encodes the vacuolated lens locus and controls neurulation and lens development. Proceedings of the National Academy of Sciences, USA, 105, 2088–2093.CrossRefGoogle Scholar
  51. Miyagi, A., Negishi, T., Yamamoto, T. S., & Ueno, N. (2015). G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/beta-catenin signaling and are essential for head formation in Xenopus. Developmental Biology, 407, 131–144.PubMedCrossRefGoogle Scholar
  52. Molyneaux, K. A., Zinszner, H., Kunwar, P. S., Schaible, K., Stebler, J., Sunshine, M. J., O'Brien, W., Raz, E., Littman, D., Wylie, C., & Lehmann, R. (2003). The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development, 130, 4279–4286.PubMedCrossRefGoogle Scholar
  53. Neuhaus, E. M., Mashukova, A., Barbour, J., Wolters, D., & Hatt, H. (2006). Novel function of beta-arrestin2 in the nucleus of mature spermatozoa. Journal of Cell Science, 119, 3047–3056.PubMedCrossRefGoogle Scholar
  54. Ng, S. Y., Lee, L. T., & Chow, B. K. (2012). Receptor oligomerization: from early evidence to current understanding in class B GPCRs. Frontiers in Endocrinology (Lausanne), 3, 175.Google Scholar
  55. Penela, P., Ribas, C., & Mayor, F. (2003). Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cellular Signalling, 15, 973–981.PubMedCrossRefGoogle Scholar
  56. Perry, K. J., Johnson, V. R., Malloch, E. L., Fukui, L., Wever, J., Thomas, A. G., Hamilton, P. W., & Henry, J. J. (2010). The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis. Development Dynasty, 239, 3024–3037.CrossRefGoogle Scholar
  57. Philipp, M., Berger, I. M., Just, S., & Caron, M. G. (2014). Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development. Journal of Biological Chemistry, 289, 26119–26130.PubMedCrossRefGoogle Scholar
  58. Pupo, A. S., Duarte, D. A., Lima, V., Teixeira, L. B., Parreiras, E. S. L. T., & Costa-Neto, C. M. (2016). Recent updates on GPCR biased agonism. Pharmacological Research, 112, 49–57.PubMedCrossRefGoogle Scholar
  59. Pyne, N. J., & Pyne, S. (2011). Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends in Pharmacological Science, 32, 443–450.CrossRefGoogle Scholar
  60. Rios-Cardona, D., Ricardo-Gonzalez, R. R., Chawla, A., & Ferrell, J. E., Jr. (2008). A role for GPRx, a novel GPR3/6/12-related G-protein coupled receptor, in the maintenance of meiotic arrest in Xenopus laevis oocytes. Developmental Biology, 317, 380–388.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Romano, S. N., Edwards, H. E., Souder, J. P., Ryan, K. J., Cui, X., & Gorelick, D. A. (2017). G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish. PLoS Genetics, 13, e1007069.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Rosenbaum, D., Rasmussen, S., & Kobilka, B. (2009). The structure and function of G-protein-coupled receptors. Nature, 459, 356–363.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Rosenkilde, M. M., Benned-Jensen, T., Frimurer, T. M., & Schwartz, T. W. (2010). The minor binding pocket: a major player in 7TM receptor activation. Trends in Pharmacological Science, 31, 567–574.CrossRefGoogle Scholar
  64. Satake, H., Matsubara, S., Aoyama, M., Kawada, T., & Sakai, T. (2013). GPCR Heterodimerization in the Reproductive System: Functional Regulation and Implication for Biodiversity. Frontiers in Endocrinology (Lausanne), 4, 100.Google Scholar
  65. Schiöth, H., & Fredriksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. General Comparative and Endocrinology, 142, 94–101.CrossRefGoogle Scholar
  66. Schonenbach, N., Hussain, S., & O’Malley, M. (2014). Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Nanomedicine and Nanomaterials, 7, 408–427.Google Scholar
  67. Sergin, I., Jong, Y. I., Harmon, S. K., Kumar, V., & O’Malley, K. L. (2017). Sequences within the C Terminus of the Metabotropic Glutamate Receptor 5 (mGluR5) Are Responsible for Inner Nuclear Membrane Localization. Journal of Biological Chemistry, 292, 3637–3655.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sierra, D. A., Gilbert, D. J., Householder, D., Grishin, N. V., Yu, K., Ukidwe, P., Barker, S. A., He, W., Wensel, T. G., Otero, G., Brown, G., Copeland, N. G., Jenkins, N. A., & Wilkie, T. M. (2002). Evolution of the regulators of G-protein signaling multigene family in mouse and human. Genomics, 79, 177–185.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sjogren, B., Blazer, L. L., & Neubig, R. R. (2010). Regulators of G protein signaling proteins as targets for drug discovery. Progress in Molecular Biology and Translational Science, 91, 81–119.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sojka, A. C., Brennan, K. M., Maizels, E. T., & Young, C. D. (2017). The Science Behind G Protein-Coupled Receptors (GPCRs) and Their Accurate Visual Representation in Scientific Research. Journal of Biocommunication, 41, 32–44.CrossRefGoogle Scholar
  71. Soundararajan, M., Willard, F. S., Kimple, A. J., Turnbull, A. P., Ball, L. J., Schoch, G. A., Gileadi, C., Fedorov, O. Y., Dowler, E. F., Higman, V. A., Hutsell, S. Q., Sundstrom, M., Doyle, D. A., & Siderovski, D. P. (2008). Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proceedings of the National Academy of Sciences, USA, 105, 6457–6462.CrossRefGoogle Scholar
  72. Tan, C., Brady, A., Nickols, H., Wang, Q., & Limbird, L. (2004). Membrane trafficking of G protein-coupled receptors. Annual Review of Pharmacology and Toxicology, 44, 559–609.PubMedCrossRefGoogle Scholar
  73. Tuteja, N. (2009). Signaling through G protein coupled receptors. Plant Signaling and Behavior, 4, 942–947.PubMedCrossRefGoogle Scholar
  74. Venkatakrishnan, A., Deupi, X., Lebon, G., Tate, C., Schertler, G., & Babu, M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494, 185–194.PubMedCrossRefGoogle Scholar
  75. Voronina, E., & Wessel, G. M. (2004). βγ subunits of heterotrimeric G-proteins contribute to Ca2+ release at fertilization in the sea urchin. Journal of Cell Science, 117, 5995–6005.PubMedCrossRefGoogle Scholar
  76. Waller-Evans, H., Promel, S., Langenhan, T., Dixon, J., Zahn, D., Colledge, W. H., Doran, J., Carlton, M. B., Davies, B., Aparicio, S. A., Grosse, J., & Russ, A. P. (2010). The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS One, 5, e14047.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wang, J., & Knaut, H. (2014). Chemokine signaling in development and disease. Development, 141, 4199–4205.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wang, J., Sinnett-Smith, J., Stevens, J. V., Young, S. H., & Rozengurt, E. (2016). Biphasic Regulation of Yes-associated Protein (YAP) cellular localization, phosphorylation, and activity by G protein-coupled receptor agonists in intestinal epithelial cells: a novel role for Protein Kinase D (PKD). Journal of Biological Chemistry, 291, 17988–18005.PubMedCrossRefGoogle Scholar
  79. Wang, W., Qiao, Y., & Li, Z. (2018). New insights into modes of GPCR activation. Trends in Pharmacological Science, 39, 367–386.CrossRefGoogle Scholar
  80. Woodard, G. E., Jardin, I., Berna-Erro, A., Salido, G. M., & Rosado, J. A. (2015). Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. Internal Review of Cell and Molecular Biology, 317, 97–183.CrossRefGoogle Scholar
  81. Wu, F., Song, G., de Graaf, C., & Stevens, R. (2017). Structure and function of peptide-binding G protein-coupled receptors. Journal of Molecular Biology, 429, 2726–2745.PubMedCrossRefGoogle Scholar
  82. Xie, G. X., & Palmer, P. P. (2007). How regulators of G protein signaling achieve selective regulation. Journal of Molecular Biology, 366, 349–365.PubMedCrossRefGoogle Scholar
  83. Xue, C., Yen-Ping, H., & Heitman, J. (2008). Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiology Reviews, 32, 1010–1032.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Yang, C. R., Wei, Y., Qi, S. T., Chen, L., Zhang, Q. H., Ma, J. Y., Luo, Y. B., Wang, Y. P., Hou, Y., Schatten, H., Liu, Z. H., & Sun, Q. Y. (2012). The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes. PLoS One, 7, e38807.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., Zhao, J., Yuan, H., Tumaneng, K., Li, H., Fu, X. D., Mills, G. B., & Guan, K. L. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150, 780–791.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yunhong, H., & Amantha, T. (2015). Regulation of neuronal communication by G protein-coupled receptors. FEBS Letters, 589, 1607–1619.CrossRefGoogle Scholar
  87. Zhang, D., Zhao, Q., & Wu, B. (2015). Structural studies of G protein-coupled receptors. Molecular and Cell, 38, 836–842.CrossRefGoogle Scholar
  88. Zhen-Ling, P., Jian-Yi, Y., & Chen, X. (2010). An improved classification of G-protein-coupled receptors using sequence-derived features. BMC Bioinformatics, 11, 420.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Senthilkumar Rajagopal
    • 1
  • Murugavel Ponnusamy
    • 2
  1. 1.Department of BiochemistryRayalaseema UniversityKurnoolIndia
  2. 2.Center for Developmental Cardiology, Institute for Translational MedicineQingdao UniversityQingdaoChina

Personalised recommendations