Next-Generation Sequencing: Technology, Advancements, and Applications

  • Gourja Bansal
  • Kiran Narta
  • Manoj Ramesh Teltumbade


The invention of next-generation sequencing (NGS) platforms leads to unprecedented growth of sequence data which is used in many areas including biomedical, agriculture, and basic research. The low cost and high efficiency are the key to success of NGS technologies over traditional sequencing methods which include Sanger’s chain termination method and Maxam-Gilbert’s chemical degradation method. In present scenario, these methods have been replaced by NGS technologies and applied to a variety of genomes ranging from singular to multicellular organisms. Considering the importance of sequencing in biological experiments, the present chapter focuses on the evolution of sequencing generations and the role of bioinformatics in the development of NGS data analysis pipeline. Moreover, the applications of NGS in genomics, transcriptomics, and biological and biomedical research have been discussed.


Bioinformatics Metagenomics Nanopore sequencing Next-generation sequencing Shotgun sequencing Transcriptome sequencing 


  1. Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ et al (2000) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28:E87CrossRefGoogle Scholar
  2. Aggarwal S, Gheware A, Agrawal A, Ghosh S, Prasher B, Mukerji M (2015) Combined genetic effects of EGLN1 and VWF modulate thrombotic outcome in hypoxia revealed by Ayurgenomics approach. J Transl Med 13:184CrossRefGoogle Scholar
  3. Anderson S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 9:3015–3027CrossRefGoogle Scholar
  4. Ansorge W, Sproat BS, Stegemann J, Schwager C (1986) A non-radioactive automated method for DNA sequence determination. J Biochem Biophys Methods 13:315–323CrossRefGoogle Scholar
  5. Ansorge W, Sproat B, Stegemann J, Schwager C, Zenke M (1987) Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Res 15:4593–4602CrossRefGoogle Scholar
  6. Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128:1705–1710CrossRefGoogle Scholar
  7. Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K et al (2014) RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res 24:1765–1773CrossRefGoogle Scholar
  8. Bayley H (2010) Nanotechnology: holes with an edge. Nature 467:164–165CrossRefGoogle Scholar
  9. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630CrossRefGoogle Scholar
  10. Bowers J, Mitchell J, Beer E, Buzby PR, Causey M et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6:593–595CrossRefGoogle Scholar
  11. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefGoogle Scholar
  12. Brunner AL, Beck AH, Edris B, Sweeney RT, Zhu SX et al (2012) Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol 13:R75CrossRefGoogle Scholar
  13. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941CrossRefGoogle Scholar
  14. Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE (2013) The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn 33:667–674CrossRefGoogle Scholar
  15. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608–611CrossRefGoogle Scholar
  16. Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘biofuel’. Appl Microbiol Biotechnol 89:1289–1303CrossRefGoogle Scholar
  17. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307CrossRefGoogle Scholar
  18. Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM et al (2014) The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158:1187–1198CrossRefGoogle Scholar
  19. Consortium GP (2015) A global reference for human genetic variation. Nature 526:68–74CrossRefGoogle Scholar
  20. Cram DS, Zhou D (2016) Next generation sequencing: coping with rare genetic diseases in China. Intract Rare Dis Res 5:140–144CrossRefGoogle Scholar
  21. David Al Dulaimi M (2015) The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch Iran Med 18:244PubMedGoogle Scholar
  22. Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107:16060–16065CrossRefGoogle Scholar
  23. Eckhardt F, Beck S, Gut IG, Berlin K (2004) Future potential of the human epigenome project. Expert Rev Mol Diagn 4:609–618CrossRefGoogle Scholar
  24. Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921CrossRefGoogle Scholar
  25. Eid J, Fehr A, Gray J, Luong K, Lyle J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefGoogle Scholar
  26. Flint HJ, Duncan SH, Louis P (2014) Gut microbiome and obesity. In: Treatment of the obese patient. Springer, New York, pp 73–82Google Scholar
  27. Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-throughput sequencing data. Bioinformatics 28:3169–3177CrossRefGoogle Scholar
  28. Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM et al (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103:034301CrossRefGoogle Scholar
  29. Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T et al (2009) The challenges of sequencing by synthesis. Nat Biotechnol 27:1013–1023CrossRefGoogle Scholar
  30. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852CrossRefGoogle Scholar
  31. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351CrossRefGoogle Scholar
  32. Gordon D, Huddleston J, Chaisson MJ, Hill CM, Kronenberg ZN et al (2016) Long-read sequence assembly of the gorilla genome. Science 352:aae0344CrossRefGoogle Scholar
  33. Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:e11CrossRefGoogle Scholar
  34. Gut IG (2013) New sequencing technologies. Clini Transl Oncol Off Publ Fed Span Oncol Soc Nat Cancer Inst Mex 15:879–881Google Scholar
  35. Haque F, Li J, Wu HC, Liang XJ, Guo P (2013) Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8:56–74CrossRefGoogle Scholar
  36. Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8CrossRefGoogle Scholar
  37. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56CrossRefGoogle Scholar
  38. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467CrossRefGoogle Scholar
  39. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80CrossRefGoogle Scholar
  40. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770–13773CrossRefGoogle Scholar
  41. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38CrossRefGoogle Scholar
  42. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM et al (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14:R101CrossRefGoogle Scholar
  43. Korlach J, Bibillo A, Wegener J, Peluso P, Pham TT et al (2008a) Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides Nucleotides Nucleic Acids 27:1072–1083CrossRefGoogle Scholar
  44. Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL et al (2008b) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A 105:1176–1181CrossRefGoogle Scholar
  45. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499CrossRefGoogle Scholar
  46. Lan JH, Zhang Q (2015) Clinical applications of next-generation sequencing in histocompatibility and transplantation. Curr Opin Organ Transplant 20:461–467CrossRefGoogle Scholar
  47. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  48. Lavery TJ, Roudnew B, Seymour J, Mitchell JG, Jeffries T (2012) High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea) faeces. PLoS One 7:e36478CrossRefGoogle Scholar
  49. Lee H, Gurtowski J, Yoo S, Nattestad M, Marcus S et al (2016) Third-generation sequencing and the future of genomics. bioRxiv:048603Google Scholar
  50. Lelieveld SH, Veltman JA, Gilissen C (2016) Novel bioinformatic developments for exome sequencing. Hum Genet 135:603–614CrossRefGoogle Scholar
  51. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefGoogle Scholar
  52. Liu H, He J, Tang J, Liu H, Pang P et al (2010) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327:64–67CrossRefGoogle Scholar
  53. Liu L, Li Y, Li S, Hu N, He Y et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364PubMedPubMedCentralGoogle Scholar
  54. Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735CrossRefGoogle Scholar
  55. Long A, Liti G, Luptak A, Tenaillon O (2015) Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 16:567–582CrossRefGoogle Scholar
  56. Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7:112CrossRefGoogle Scholar
  57. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402CrossRefGoogle Scholar
  58. Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203CrossRefGoogle Scholar
  59. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380CrossRefGoogle Scholar
  60. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564CrossRefGoogle Scholar
  61. McGinn S, Gut IG (2013) DNA sequencing – spanning the generations. New Biotechnol 30:366–372CrossRefGoogle Scholar
  62. McNally B, Singer A, Yu Z, Sun Y, Weng Z, Meller A (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 10:2237–2244CrossRefGoogle Scholar
  63. Messier TL, Gordon JA, Boyd JR, Tye CE, Browne G et al (2016) Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget 7:5094–5109CrossRefGoogle Scholar
  64. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46CrossRefGoogle Scholar
  65. Mills L (2014) Common file formats. Current Protocols in Bioinformatics 45:A 1B 1–A 1B18PubMedGoogle Scholar
  66. Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110:3–24CrossRefGoogle Scholar
  67. Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol 20:358–363CrossRefGoogle Scholar
  68. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341CrossRefGoogle Scholar
  69. Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N et al (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinf Biol Insights 9:75–88CrossRefGoogle Scholar
  70. Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM et al (2011) DNA sequencing of maternal plasma to detect down syndrome: an international clinical validation study. Genet Med 13:913–920CrossRefGoogle Scholar
  71. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435CrossRefGoogle Scholar
  72. Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O et al (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 12:780–786CrossRefGoogle Scholar
  73. Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93:105–111CrossRefGoogle Scholar
  74. Rabbani B, Tekin M, Mahdieh N (2014) The promise of whole-exome sequencing in medical genetics. J Hum Genet 59:5–15CrossRefGoogle Scholar
  75. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124CrossRefGoogle Scholar
  76. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefGoogle Scholar
  77. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240CrossRefGoogle Scholar
  78. Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167CrossRefGoogle Scholar
  79. Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326CrossRefGoogle Scholar
  80. Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 311:1544–1546CrossRefGoogle Scholar
  81. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630CrossRefGoogle Scholar
  82. Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014CrossRefGoogle Scholar
  83. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732CrossRefGoogle Scholar
  84. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679CrossRefGoogle Scholar
  85. Soto J, Rodriguez-Antolin C, Vallespin E, de Castro CJ, Ibanez de Caceres I (2016) The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl Res J Lab Clin Med 169(1–18):e11Google Scholar
  86. The GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585CrossRefGoogle Scholar
  87. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefGoogle Scholar
  88. Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46CrossRefGoogle Scholar
  89. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804CrossRefGoogle Scholar
  90. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063CrossRefGoogle Scholar
  91. Van Verk MC, Hickman R, Pieterse CM, Van Wees SC (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18:175–179CrossRefGoogle Scholar
  92. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefGoogle Scholar
  93. Venter JC, Smith HO, Adams MD (2015) The sequence of the human genome. Clin Chem 61:1207–1208CrossRefGoogle Scholar
  94. Wang Y, Navin NE (2015) Advances and applications of single-cell sequencing technologies. Mol Cell 58:598–609CrossRefGoogle Scholar
  95. Watson M (2014) Quality assessment and control of high-throughput sequencing data. Front Genet 5:235CrossRefGoogle Scholar
  96. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefGoogle Scholar
  97. Whiteford N, Skelly T, Curtis C, Ritchie ME, Lohr A et al (2009) Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics 25:2194–2199CrossRefGoogle Scholar
  98. Xing M-N, Zhang X-Z, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929CrossRefGoogle Scholar
  99. Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics 12:190–197CrossRefGoogle Scholar
  100. Zhao Q, Wang Y, Dong J, Zhao L, Rui X, Yu D (2012) Nanopore-based DNA analysis via graphene electrodes. J Nanomater 2012:4Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Gourja Bansal
    • 1
  • Kiran Narta
    • 1
  • Manoj Ramesh Teltumbade
    • 1
  1. 1.Institute of Integrative and Genomic BiologyNew DelhiIndia

Personalised recommendations