Next-Generation Sequencing: Technology, Advancements, and Applications
Abstract
The invention of next-generation sequencing (NGS) platforms leads to unprecedented growth of sequence data which is used in many areas including biomedical, agriculture, and basic research. The low cost and high efficiency are the key to success of NGS technologies over traditional sequencing methods which include Sanger’s chain termination method and Maxam-Gilbert’s chemical degradation method. In present scenario, these methods have been replaced by NGS technologies and applied to a variety of genomes ranging from singular to multicellular organisms. Considering the importance of sequencing in biological experiments, the present chapter focuses on the evolution of sequencing generations and the role of bioinformatics in the development of NGS data analysis pipeline. Moreover, the applications of NGS in genomics, transcriptomics, and biological and biomedical research have been discussed.
Keywords
Bioinformatics Metagenomics Nanopore sequencing Next-generation sequencing Shotgun sequencing Transcriptome sequencingReferences
- Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ et al (2000) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28:E87CrossRefGoogle Scholar
- Aggarwal S, Gheware A, Agrawal A, Ghosh S, Prasher B, Mukerji M (2015) Combined genetic effects of EGLN1 and VWF modulate thrombotic outcome in hypoxia revealed by Ayurgenomics approach. J Transl Med 13:184CrossRefGoogle Scholar
- Anderson S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res 9:3015–3027CrossRefGoogle Scholar
- Ansorge W, Sproat BS, Stegemann J, Schwager C (1986) A non-radioactive automated method for DNA sequence determination. J Biochem Biophys Methods 13:315–323CrossRefGoogle Scholar
- Ansorge W, Sproat B, Stegemann J, Schwager C, Zenke M (1987) Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Res 15:4593–4602CrossRefGoogle Scholar
- Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128:1705–1710CrossRefGoogle Scholar
- Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K et al (2014) RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res 24:1765–1773CrossRefGoogle Scholar
- Bayley H (2010) Nanotechnology: holes with an edge. Nature 467:164–165CrossRefGoogle Scholar
- Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630CrossRefGoogle Scholar
- Bowers J, Mitchell J, Beer E, Buzby PR, Causey M et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6:593–595CrossRefGoogle Scholar
- Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691CrossRefGoogle Scholar
- Brunner AL, Beck AH, Edris B, Sweeney RT, Zhu SX et al (2012) Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol 13:R75CrossRefGoogle Scholar
- Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941CrossRefGoogle Scholar
- Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE (2013) The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn 33:667–674CrossRefGoogle Scholar
- Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608–611CrossRefGoogle Scholar
- Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘biofuel’. Appl Microbiol Biotechnol 89:1289–1303CrossRefGoogle Scholar
- Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY et al (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148:1293–1307CrossRefGoogle Scholar
- Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM et al (2014) The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158:1187–1198CrossRefGoogle Scholar
- Consortium GP (2015) A global reference for human genetic variation. Nature 526:68–74CrossRefGoogle Scholar
- Cram DS, Zhou D (2016) Next generation sequencing: coping with rare genetic diseases in China. Intract Rare Dis Res 5:140–144CrossRefGoogle Scholar
- David Al Dulaimi M (2015) The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch Iran Med 18:244PubMedGoogle Scholar
- Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107:16060–16065CrossRefGoogle Scholar
- Eckhardt F, Beck S, Gut IG, Berlin K (2004) Future potential of the human epigenome project. Expert Rev Mol Diagn 4:609–618CrossRefGoogle Scholar
- Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921CrossRefGoogle Scholar
- Eid J, Fehr A, Gray J, Luong K, Lyle J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefGoogle Scholar
- Flint HJ, Duncan SH, Louis P (2014) Gut microbiome and obesity. In: Treatment of the obese patient. Springer, New York, pp 73–82Google Scholar
- Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-throughput sequencing data. Bioinformatics 28:3169–3177CrossRefGoogle Scholar
- Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM et al (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103:034301CrossRefGoogle Scholar
- Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T et al (2009) The challenges of sequencing by synthesis. Nat Biotechnol 27:1013–1023CrossRefGoogle Scholar
- Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852CrossRefGoogle Scholar
- Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351CrossRefGoogle Scholar
- Gordon D, Huddleston J, Chaisson MJ, Hill CM, Kronenberg ZN et al (2016) Long-read sequence assembly of the gorilla genome. Science 352:aae0344CrossRefGoogle Scholar
- Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:e11CrossRefGoogle Scholar
- Gut IG (2013) New sequencing technologies. Clini Transl Oncol Off Publ Fed Span Oncol Soc Nat Cancer Inst Mex 15:879–881Google Scholar
- Haque F, Li J, Wu HC, Liang XJ, Guo P (2013) Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8:56–74CrossRefGoogle Scholar
- Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8CrossRefGoogle Scholar
- Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56CrossRefGoogle Scholar
- Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467CrossRefGoogle Scholar
- Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80CrossRefGoogle Scholar
- Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770–13773CrossRefGoogle Scholar
- Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38CrossRefGoogle Scholar
- Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM et al (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14:R101CrossRefGoogle Scholar
- Korlach J, Bibillo A, Wegener J, Peluso P, Pham TT et al (2008a) Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides Nucleotides Nucleic Acids 27:1072–1083CrossRefGoogle Scholar
- Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL et al (2008b) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A 105:1176–1181CrossRefGoogle Scholar
- Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499CrossRefGoogle Scholar
- Lan JH, Zhang Q (2015) Clinical applications of next-generation sequencing in histocompatibility and transplantation. Curr Opin Organ Transplant 20:461–467CrossRefGoogle Scholar
- Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
- Lavery TJ, Roudnew B, Seymour J, Mitchell JG, Jeffries T (2012) High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea) faeces. PLoS One 7:e36478CrossRefGoogle Scholar
- Lee H, Gurtowski J, Yoo S, Nattestad M, Marcus S et al (2016) Third-generation sequencing and the future of genomics. bioRxiv:048603Google Scholar
- Lelieveld SH, Veltman JA, Gilissen C (2016) Novel bioinformatic developments for exome sequencing. Hum Genet 135:603–614CrossRefGoogle Scholar
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefGoogle Scholar
- Liu H, He J, Tang J, Liu H, Pang P et al (2010) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327:64–67CrossRefGoogle Scholar
- Liu L, Li Y, Li S, Hu N, He Y et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364PubMedPubMedCentralGoogle Scholar
- Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735CrossRefGoogle Scholar
- Long A, Liti G, Luptak A, Tenaillon O (2015) Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 16:567–582CrossRefGoogle Scholar
- Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7:112CrossRefGoogle Scholar
- Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402CrossRefGoogle Scholar
- Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203CrossRefGoogle Scholar
- Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380CrossRefGoogle Scholar
- Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564CrossRefGoogle Scholar
- McGinn S, Gut IG (2013) DNA sequencing – spanning the generations. New Biotechnol 30:366–372CrossRefGoogle Scholar
- McNally B, Singer A, Yu Z, Sun Y, Weng Z, Meller A (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 10:2237–2244CrossRefGoogle Scholar
- Messier TL, Gordon JA, Boyd JR, Tye CE, Browne G et al (2016) Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget 7:5094–5109CrossRefGoogle Scholar
- Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46CrossRefGoogle Scholar
- Mills L (2014) Common file formats. Current Protocols in Bioinformatics 45:A 1B 1–A 1B18PubMedGoogle Scholar
- Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110:3–24CrossRefGoogle Scholar
- Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol 20:358–363CrossRefGoogle Scholar
- Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341CrossRefGoogle Scholar
- Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N et al (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinf Biol Insights 9:75–88CrossRefGoogle Scholar
- Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM et al (2011) DNA sequencing of maternal plasma to detect down syndrome: an international clinical validation study. Genet Med 13:913–920CrossRefGoogle Scholar
- Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435CrossRefGoogle Scholar
- Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O et al (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 12:780–786CrossRefGoogle Scholar
- Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93:105–111CrossRefGoogle Scholar
- Rabbani B, Tekin M, Mahdieh N (2014) The promise of whole-exome sequencing in medical genetics. J Hum Genet 59:5–15CrossRefGoogle Scholar
- Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124CrossRefGoogle Scholar
- Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefGoogle Scholar
- Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240CrossRefGoogle Scholar
- Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167CrossRefGoogle Scholar
- Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326CrossRefGoogle Scholar
- Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 311:1544–1546CrossRefGoogle Scholar
- Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630CrossRefGoogle Scholar
- Sharon D, Tilgner H, Grubert F, Snyder M (2013) A single-molecule long-read survey of the human transcriptome. Nat Biotechnol 31:1009–1014CrossRefGoogle Scholar
- Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732CrossRefGoogle Scholar
- Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679CrossRefGoogle Scholar
- Soto J, Rodriguez-Antolin C, Vallespin E, de Castro CJ, Ibanez de Caceres I (2016) The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl Res J Lab Clin Med 169(1–18):e11Google Scholar
- The GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585CrossRefGoogle Scholar
- Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefGoogle Scholar
- Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46CrossRefGoogle Scholar
- Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804CrossRefGoogle Scholar
- Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063CrossRefGoogle Scholar
- Van Verk MC, Hickman R, Pieterse CM, Van Wees SC (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18:175–179CrossRefGoogle Scholar
- Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefGoogle Scholar
- Venter JC, Smith HO, Adams MD (2015) The sequence of the human genome. Clin Chem 61:1207–1208CrossRefGoogle Scholar
- Wang Y, Navin NE (2015) Advances and applications of single-cell sequencing technologies. Mol Cell 58:598–609CrossRefGoogle Scholar
- Watson M (2014) Quality assessment and control of high-throughput sequencing data. Front Genet 5:235CrossRefGoogle Scholar
- Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefGoogle Scholar
- Whiteford N, Skelly T, Curtis C, Ritchie ME, Lohr A et al (2009) Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics 25:2194–2199CrossRefGoogle Scholar
- Xing M-N, Zhang X-Z, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929CrossRefGoogle Scholar
- Yang Y, Xie B, Yan J (2014) Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics 12:190–197CrossRefGoogle Scholar
- Zhao Q, Wang Y, Dong J, Zhao L, Rui X, Yu D (2012) Nanopore-based DNA analysis via graphene electrodes. J Nanomater 2012:4Google Scholar