Advertisement

Analysis of Face Recognition Algorithms for Uncontrolled Environments

  • Siddheshwar S. Gangonda
  • Prashant P. Patavardhan
  • Kailash J. Karande
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

Face recognition is a challenging problem in biometric systems, which has received a lot of attention in the last two decades as it has numerous applications in computer vision and pattern recognition. There is remarkable progress in the face recognition systems under controlled conditions, but they degrade for uncontrolled conditions like pose, illumination, expression, and occlusion etc. In this paper, we discussed different algorithms like PCA, DCT, LDA, ANN, ICA, HMM, and Wavelet with its pros and cons. The different face database used for face recognition is discussed. It also discusses various challenges and possible future directions for face recognition task.

Keywords

Face recognition Artificial neural network (ANN) Discrete cosine transform (DCT) Hidden Markov model (HMM) 

References

  1. 1.
    Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer, London Dordrecht, Heidelberg, NewYork. ISBN 978-0-85729-931-4Google Scholar
  2. 2.
    Karande, K.J., Talbar, S.N.: Independent Component Analysis of Edge Information for Face Recognition. Springer Briefs in Applied Sciences and Technology (2014). ISSN: 2191-530XGoogle Scholar
  3. 3.
    Bhele, S.G., Mankar, V.H.: A review paper on face recognition techniques. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 1(8) (2012). ISSN: 2278-1323Google Scholar
  4. 4.
    Bakhshi, Y., Kaur, S., Verma, P.: A study based on various face recognition algorithms. Int. J. Comput. Appl. 129(13), 0975–8887 (2015)CrossRefGoogle Scholar
  5. 5.
    Ohlyan, S., Sangwan, S., Ahuja, T.: A survey on various problems & chal- lenges in face recognition. Int. J. Eng. Technol. (IJERT) 2(6), (2013) ISSN: 2278-0181Google Scholar
  6. 6.
    Kakade, S.D.: A review paper on face recognition techniques. Int. J. Res. Eng. Appl. Manag. (IJREAM) 02(02) (2016). ISSN: 2494-9150Google Scholar
  7. 7.
    Sharif, M., Mohsin, S., Javed, M.Y.: A survey: face recognition techniques. Res. J. Appl. Sci. Eng. Technol. 4(23), 4979–4990 (2012). ISSN: 2040-7467Google Scholar
  8. 8.
    Singh, K.R., Zaveri, M.A., Raghuwanshi, M.M.: Illumination and pose invariant face recognition: a technical review. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. (IJCISIM) 2, 029–038 (2010). ISSN: 2150-7988Google Scholar
  9. 9.
    Aswathy. R.: A literature review on facial expression recognition techniques. IOSR J. Comput. Eng. (IOSR-JCE) 11(1), 61–64 (2013)CrossRefGoogle Scholar
  10. 10.
    Saini, R., Saini, A., Agarwal, D.: Analysis of different face recognition algorithms. Int. J. Eng. Res. Technol. (IJERT) 3(11) (2014). ISSN: 2278-0181Google Scholar
  11. 11.
    Hassaballah, M., Aly, S.: Face recognition: challenges, achievements and future di- rections. Inst. Eng. Technol. (IET) (2014). ISSN: 1751-9632.  https://doi.org/10.1049/iet-cvi.2014

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Siddheshwar S. Gangonda
    • 1
  • Prashant P. Patavardhan
    • 2
  • Kailash J. Karande
    • 1
  1. 1.SKN Sinhgad COEPandharpurIndia
  2. 2.KLS Gogte Institute of TechnologyBelagaviIndia

Personalised recommendations