The Detrended Fluctuation Analysis of EEG Signals: A Meditation-Based Study

  • Sunil R. HirekhanEmail author
  • Ramchandra Manthalkar
  • Shruti Phutke
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)


The Detrended Fluctuation Analysis is a widely used method for analysis of non-stationary time series which has been applied to EEG signals. The Detrended Fluctuation Analysis (DFA) of the EEG signals in pre- and post-meditation (mindfulness) intervention are compared. It is observed that the EEG data obtained from 8 subjects out of total 11 subjects shows reduction in the DFA values. The reduction in DFA values represents the lower intrinsic fluctuations in the EEG time series, which is a measure of better (higher) complexity of these vital rhythms. The reduced DFA values after 8 weeks of Focused Attention (mindfulness) meditation practice in more number of subjects, indicates that the meditation practice enhances the ability to handle complexity. The reduced DFA values indicate improved neuronal functioning of these subjects.


Detrended fluctuation analysis (DFA) Power-law correlation Mindfulness 


  1. 1.
    Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.H.A., Havlin, S., Bunde, A.: Detrended long-range correlations with detrended fluctuation analysis. Physica A: Stat. Mech. Appl. 296, 441–454 (2001)Google Scholar
  2. 2.
    Adda, A., Benoudnine, H.: Detrended fluctuation analysis of EEG recordings for epileptic seizure detection. In: IEEE International Conference on Bio-engineering for Smart Technologies (BioSMART), pp. 1–4 (2016)Google Scholar
  3. 3.
    Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.: Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series. CHAOS 5(1), 85–87 (1995)CrossRefGoogle Scholar
  4. 4.
    Jospin, M., Caminal, P., Jensen, E.W., Litvan, H., Vallverdú, M., Struys, M.M.R.F., Vereecke, H.E.M., Kaplan, D.T.: Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans. Biomed. Eng. 54(5), 840–846 (2007)CrossRefGoogle Scholar
  5. 5.
    Varela, M., Vigil, L., Rodriguez, C., Vargas, B., García-Carretero, R.: Delay in the detrended fluctuation analysis crossover point as a risk factor for type 2 diabetes mellitus. J. Diabetes Res. 1–6 (2016)Google Scholar
  6. 6.
    Rodríguez de Castro, C., Vigil, L., Vargas, B., Delgado, E.G., Carretero, R.G., Ruiz-Galiana, J., Varela, M.: Glucose time series complexity as a predictor of type 2 diabetes. Diabetes/Metab. Res. Rev. 33, 1–9 (2017)CrossRefGoogle Scholar
  7. 7.
    Zebende, G.F., Oliveira Filho, F.M., Leyva Cruz, J.A.: Auto-correlation in the motor/imaginary human EEG signals: a vision about the FDFA fluctuations. PLoS ONE 12(9), 1–13 (2017)CrossRefGoogle Scholar
  8. 8.
    Hardstone, R., Poil, S.S., Schiavone, G., Jansen, R., Nikulin, V.V., Mansvelder, H.D., Linkenkaer-Hansen, K.: Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front. Physiol. 3(450), 1–13 (2012)Google Scholar
  9. 9.
    Weissman, A., Binah, O.: The fractal nature of blood glucose fluctuations. J. Diabetes Complicat. 28 646–651(2014)CrossRefGoogle Scholar
  10. 10.
    Abasolo´, D., Hornero, R., Escudero, J., Espino, P.: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer’s disease. IEEE Trans. Biomed. Eng. 55 (9) 2171–2179 (2008)CrossRefGoogle Scholar
  11. 11.
    Phothisonothai, M., Nakagawa, M.: Fractal-based EEG data analysis of body parts movement imagery tasks. J. Physiol. Sci. 57(4) 217–226 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sunil R. Hirekhan
    • 1
    Email author
  • Ramchandra Manthalkar
    • 1
  • Shruti Phutke
    • 1
  1. 1.Department of Electronics and TelecommunicationSGGSIE&TNandedIndia

Personalised recommendations