Advertisement

Design of Micro-heater on 3D-SnO2 Gas Sensor

  • Gajendrasingh Y. Rajput
  • Manoj S. Gofane
  • Sandip Dhobale
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

Design of the heater on resistive gas sensors plays an important role since the performance of the gas sensor depends on temperature of the sensing materials. Heater on the SnO2 gas sensor is designed in 3D geometry. The meander structure of heater is designed in such a way that the distribution of temperature is uniform on the sensor. COMSOL Multiphysics 5.0 simulating tool based on finite element method is used to study Joules heating in heater. Temperature of the sensor is maintained in the range of 617–621 K (344–348 °C). Uniform distribution of temperature is found on the surface of the sensors with variation of ±2 °C.

Keywords

SnO2 gas sensor Micro-heater COMSOL Multiphysics 

References

  1. 1.
    Eason, G., Taguchi, N.: Japanese Patent Application (1962)Google Scholar
  2. 2.
    Batzill, Matthias, Diebold, Ulrike: Prog. Surf. Sci. 79, 47 (2005)CrossRefGoogle Scholar
  3. 3.
    Leo, G., Rella, R., Siciliano, P., Capone, S., Alonso, J.C., Pankov, V., Ortiz, A.: Sens. Actuators B: Chem. 58(1), 370–374 (1999)Google Scholar
  4. 4.
    Sberveglieri, G.: Recent developments in semiconducting thin-film gas sensors. Sens. Actuators B: Chem. 23(2–3), 103–109 (1995)CrossRefGoogle Scholar
  5. 5.
    Mitra, P., Chatterjee, A.P., Maiti, H.S.: ZnO thin film sensor. Mater. Lett. 35(1–2), 33–38 (1998)CrossRefGoogle Scholar
  6. 6.
    Karunagaran, B., Uthirakumar, P., Chung, S.J., Velumani, S., Suh, E.-K.: TiO2 thin film gas sensor for monitoring ammonia. In: Materials Characterization, vol. 58 (8–9), pp. 680–684 (2007)CrossRefGoogle Scholar
  7. 7.
    Eranna, G., Runthala, D.P., Gupta, R.P.: Oxide materials for development of integrated gas sensors-a comprehensive review. Crit. Rev. Solid State Mater. Sci. (3–4), 111–188 (2004)CrossRefGoogle Scholar
  8. 8.
    Umbarkar, S.B., Rajput, G.Y., Vasappanavara, R.: Design and analysis of CO2 sensor using COMSOL multiphysics. In: Proceedings COMSOL Conference (2016)Google Scholar
  9. 9.
    Velmathi, S., Ramshanker, G., Mohan, N., Design, S.: Electro-thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing. In: Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society, pp. 1258–1262 (2010)Google Scholar
  10. 10.
    Sujatha, L., Selvakumar, V.S., Aravind, S., Padamapriya, R., Preethi, B.: Design and analysis of micro-heaters using COMSOL multiphysics for MEMS based gas sensor. In: Proceedings of the COMSOL Conference (2012)Google Scholar
  11. 11.
    Bansal, V., Gurjar, A., Kumar, D., Prasad, B.: 3-D design, electro-thermal simulation and geometrical optimization of spiral platinum micro-heaters for low power gas sensing applications using COMSOL. In: Proceedings COMSOL Conference (2011)Google Scholar
  12. 12.
    Dugdale, J.S.: The Electrical Properties of Metals and Alloys. Dover Publications (2016)Google Scholar
  13. 13.
    Swanson, J.G., Campbell, D.S.: The structural and electrical properties of 80: 20 NiCr thin films. Thin Solid Films 1(3), 183–202 (1967)CrossRefGoogle Scholar
  14. 14.
    Matula, R.A.: Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8(4), 1147–1298 (1979)CrossRefGoogle Scholar
  15. 15.
    Monika, Dr, Arora, A.: Design and simulation of MEMS based microhotplate as gas sensor. Int. J. Adv. Res. Comput. Eng. Technol. 2(8), 2487–2492 (2013)Google Scholar
  16. 16.
    Dumitrescu, M., Cobianu, C., Lungu, D., Dascalu, D., Pascu, A., Kolev, S., van den Berg, A.: Thermal simulation of surface micromachined polysilicon hot plates of low power consumption. Sens. Actuators A: Phys. 76(1–3), 51–56 (1999)CrossRefGoogle Scholar
  17. 17.
    Semancik, S., Cavicchi, R.E., Wheeler, M.C., Tiffany, J.E., Poirier, G.E., Walton, R.M., Suehle, J.S., Panchapakesan, B., DeVoe, D.L.: Microhotplate platforms for chemical sensor research. Sens. Actuators B: Chem. 77(1–2), 579–591 (2001)CrossRefGoogle Scholar
  18. 18.
    Cerdà Belmonte, J., Manzano, J., Arbiol, J., Cirera, A., Puigcorbé, J., Vilà, A., Sabaté, N., Gràcia, I., Cané, C., Morante, J.R.: Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2. Sens. Actuators B: Chem. 114(2), 881–892 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gajendrasingh Y. Rajput
    • 1
  • Manoj S. Gofane
    • 1
  • Sandip Dhobale
    • 1
  1. 1.Department of Electronics EngineeringRamrao Adik Institute of TechnologyNerul, Navi MumbaiIndia

Personalised recommendations