Advertisement

AnaData: A Novel Approach for Data Analytics Using Random Forest Tree and SVM

  • Bali Devi
  • Sarvesh Kumar
  • Anuradha
  • Venkatesh Gauri Shankar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

Big Data has been coined to refer different types of automated and non-automated system, which generated huge amount of data like audio, video, PDF documents, medical, biometric, etc., in the form of structured, unstructured or semi-structured data. In this paper, we are representing data analytics using Random Forest Tree and SVM (Support Vector Machine). The Big Data Analytics is utilized after integrating with digital capabilities of business or other. As per our novel algorithm approach, we have modified a combination of two robust algorithms of data mining such as Random Forest Tree and SVM. To check the robustness and feasibility of our approach, we are using some statistical techniques like precision, recall, sensitivity, specificity and confusion matrix for proving accuracy and ability benchmark. At last, the accuracy and speed-up time for doing the analysis is low as compared to existing algorithm. As for the accuracy calculation, our approach ‘AnaData’ gives result as 95% approximately.

Keywords

Big data analytics Big data Random forest tree Support vector machine Data mining 

References

  1. 1.
    Google Cloud and Big Data. https://cloud.google.com/bigquery/ (2017). Accessed 20 Oct 2017
  2. 2.
    Digital Innovation Mobile Big Data. www.digitalinnovationgazette.com/mobile/big/data/ (2017). Accessed 17 Oct 2017
  3. 3.
    Venturebeat Big Data Analytics. www.venturebeat.com/2015/01/22/big-data-and-mobile-analytics-ready-to-rule-2015/ (2017). Accessed 15 Oct 2017
  4. 4.
    Knowledge Hut Types Of Big Data. https://www.knowledgehut.com/blog/bigdata-hadoop/types-of-big-data (2017). Accessed 12 Sept 2017
  5. 5.
    Impact Radius The seven Vs. https://www.impactradius.com/blog/7-vs-big-data/ (2017). Accessed 12 Nov 2017
  6. 6.
    Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th International Conference on WWW, pp. 287–297 (2016)Google Scholar
  7. 7.
    Yang, C., Huang, Q., Li, Z., Liu, K., Hu, F.: Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth Published by Informa UK Limited, Trading as Taylor Francis (2016)Google Scholar
  8. 8.
    Shrivastava, A., Verma, V.K., Shankar, V.G.: XTrap: trapping client and server side XSS vulnerability. In: 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, pp. 394–398 (2016).  https://doi.org/10.1109/pdgc.2016.7913227
  9. 9.
    Shankar, V.G., Somani, G., Gaur, M.S., Laxmi, V., Conti, M.: AndroTaint: an efficient android malware detection framework using dynamic taint analysis. In: 2017 ISEA Asia Security and Privacy (ISEASP), Surat, pp. 1–13 (2017).  https://doi.org/10.1109/iseasp.2017.7976989
  10. 10.
    Brinker, K.: Incorporating diversity in active learning with support vector machines In: Proceedings of the 20th International Conference on Machine Learning, pp. 59–66. ACM, Washington, USA (2003)Google Scholar
  11. 11.
    Wager, S., Hastie, T., Efron, B.: Confidence intervals for random forests: the Jackknife and the Infinitesimal Jackknife. J. Mach. Learn. Res. JMLR 15(1), 162–551 (2014)Google Scholar
  12. 12.
    Scornet, E., Biau, G., Vert, J.: Consistency of random forests. Ann. Stat. 43(4), 1716–1741 (2015).  https://doi.org/10.1214/15-aos1321MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kune, R., Konugurthi, P.K., Agarwal, A., Chillarige, R.R., Buyya, R.: The anatomy of big data computing. Softw. Pract. Exper. 46, 79–105 (2016)Google Scholar
  14. 14.
    Shankar, A., Gauri, V., Somani, G.: Anti-Hijack: runtime detection of malware initiated hijacking in android. Procedia Comput. Sci. 78, 587–594 (2016).  https://doi.org/10.1016/j.procs.2016.02.105CrossRefGoogle Scholar
  15. 15.
    Breiman, L.: Random forests. In: 2001 Random Forests Machine Learning, vol. 45(1), pp. 5–32 (2001)Google Scholar
  16. 16.
    Bernard, S., Heutte, L., Adam, S.: Forest-RK: a new random forest induction method. In: Proceedings of 4th International Conference on Intelligent Computing: Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence. Springer (2008)Google Scholar
  17. 17.
    K Dnuggets Social Media Data. https://www.kdnuggets.com/2014/08/interesting-social-media-datasets.html (2017). Accessed 04 Oct 2017
  18. 18.
    UCI Transactional. http://archive.ics.uci.edu/ml/datasets/online+retail (2017). Accessed 28 Oct 2017
  19. 19.
    IMDB Movies Dataset. https://www.kaggle.com/orgesleka/imdbmovies (2017). Accessed 21 Oct 2017
  20. 20.
    Google Public Dataset. https://cloud.google.com/public-datasets/ (2017). Accessed 19 Oct 2017
  21. 21.
    Rtwilson Geographical Dataset. https://freegisdata.rtwilson.com/ (2017). Accessed 13 Oct 2017
  22. 22.
    MIT Genetic Dataset. https://www.ll.mit.edu//ideval/data/ (2017). Accessed 17 Oct 2017
  23. 23.
    Shankar, V.G., Jangid, M., Devi, B., Kabra, S.: Mobile Big Data: Malware and Its Analysis. In Proceedings of First International Conference on Smart System, Innovations and Computing. Smart Innovation, Systems and Technologies, vol. 79, pp. 831–842, Springer, Singapore, (2018) https://doi.org/10.1007/978-981-10-5828-8_79 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bali Devi
    • 1
  • Sarvesh Kumar
    • 1
  • Anuradha
    • 1
  • Venkatesh Gauri Shankar
    • 2
  1. 1.CSEJayoti Vidyapeeth Women’s UniversityJaipurIndia
  2. 2.SCIT, Manipal University JaipurJaipurIndia

Personalised recommendations