Spatial Modulation Technique: Achievements and Challenges

  • Namita AgarwalEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)


Multiple antenna techniques are becoming one of the key technologies used for wireless communications these days. They trade-off higher data rates and superior error performance for increased complexity and cost. Spatial Modulation (SM) is a transmission technique using MIMO system to offer low-system complexity, improved data rate and better error performance in correlated channel environments. It exploits the properties of randomness and uniqueness of the wireless communication channel. This is done by using a coding method to establish a one is to one mapping of the transmitted information bits along with spatial positions of the transmitting antennas which are arranged in an array. The transmitted signal and the transmitting antenna number are estimated using this information for de-mapping the information block. This avoids Inter-channel Interference though a high spectral efficiency is maintained. This paper outlines the research achievements along with challenging research issues of this transmission technique.


Constellation point Inter-channel interference Multiple input multiple output systems Spatial domain Spectral efficiency 


  1. 1.
    Mesleh, R., Haas, H., Sinanovic, S., Ahn, C.W., Yun, S.: Spatial modulation. IEEE Trans. Veh. Technol. 57(4), 2228–2241 (2008)CrossRefGoogle Scholar
  2. 2.
    Tonello, A.: Space-time bit-interleaved coded modulation with an iterative decoding strategy. In: Proceedings of the IEEE 52nd Vehicular Technology Conference vol. 1, pp. 473–478 (2000)Google Scholar
  3. 3.
    Jeganathan, J., Ghrayeb, A.: LSzczecinski: spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12(8), 545–547 (2008)CrossRefGoogle Scholar
  4. 4.
    Mietzner, J., Schober, R., Lampe, L., Gerstacker, W.H., Hoher, P.A.: Multiple–antenna techniques for wireless communications—a comprehensive literature survey. IEEE Commun. Surv. Tutor. 11(2), 87–105 (2009)CrossRefGoogle Scholar
  5. 5.
    Song, S., Yang, Y., Xiong, Q., Xie, K., Jeong, B.J., Jiao, B.: A channel hopping technique I: theoretical studies on band efficiency and capacity. In: IEEE International Conference on Communication, Circuits and Systems, vol. 1, pp. 229–233 (2004)Google Scholar
  6. 6.
    Yang, Y., Jiao, B.: Information–guided channel–hopping for high data rate wireless communication. IEEE Commun. Lett. 12(4), 225–227 (2008)CrossRefGoogle Scholar
  7. 7.
    Hasan, Z., Boostanimehr, H., Bhargava, V.K.: Green cellular networks: a survey, some research issues, and challenges. IEEE Commun. Surv. Tutor. 13(4), 524–540 (2011)CrossRefGoogle Scholar
  8. 8.
    Di Renzo, M., Haas, H.: Bit error probability of SM-MIMO over generalized fading channels. IEEE Trans. Veh. Technol. 61(3), 1124–1144 (2012)CrossRefGoogle Scholar
  9. 9.
    Jeganathan, J., Ghrayeb, A., Szczecinski, L., Ceron, A.: Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 8(7), 3692–3703 (2009)CrossRefGoogle Scholar
  10. 10.
    Hwang, S.U., Jeon, S., Lee, S., Seo, J.: Soft–output ML detector for spatial modulation OFDM systems. IEICE Electron. Express 6(19), 1426–1431 (2009)CrossRefGoogle Scholar
  11. 11.
    Mesleh, R.Y., Di Renzo, M., Haas, H., Grant, P.M.: Trellis coded spatial modulation. IEEE Trans. Wirel. Commun. 9(7), 2349–2361 (2010)CrossRefGoogle Scholar
  12. 12.
    Cisco: Cisco visual networking index: global mobile data traffic forecast update, 2012–2017 (2013)Google Scholar
  13. 13.
    Di Renzo, C., Merola, A., Guidotti, F., Santucci, G.E.: Corazza: error performance of multi-antenna receivers in a Poisson field of interferers VA stochastic geometry approach. IEEE Trans. Commun. 61(5), 2025–2047 (2013)CrossRefGoogle Scholar
  14. 14.
    Di Renzo, M., Guidotti, A., Corazza, G.E.: Average rate of downlink heterogeneous cellular networks over generalized fading channels VA stochastic geometry approach. IEEE Trans. Commun. 61(7), 3050–3071 (2013)CrossRefGoogle Scholar
  15. 15.
    Ghosh, A., Andrews, J.G., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Vi-sotsky, E., Thomas, T.A., Xia, P., Jo, H.S., Dhillon, H.S., Novlan, T.D.: Heterogeneous cellular networks: from theory to practice. IEEE Commun. Mag. 50(6), 54–64 (2012)CrossRefGoogle Scholar
  16. 16.
    Andrews, J.G.: Seven ways that HetNets are a cellular paradigm shift. IEEE Commun. Mag. 51(3), 136–144 (2013)CrossRefGoogle Scholar
  17. 17.
    Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., Hanzo, L.: Spatial modulation for Generalized MIMO: challenges, opportunities, and implementation. In: Proceedings of the IEEE, vol. 102 (1), pp. 56–103 (2014)CrossRefGoogle Scholar
  18. 18.
    Lu, W., Di Renzo, M.: Performance analysis of spatial modulation MIMO in a poisson field of interferers. In: Proceedings of the IEEE International Conference Computing, Networking and Communications, pp. 1–7 (2014)Google Scholar
  19. 19.
    Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutor. 13(3), 443–461 (2011)CrossRefGoogle Scholar
  20. 20.
    Huang, K., Lau, V.K.N.: Enabling wireless power transfer in cellular networks: architecture, modeling, and deployment (2012). 1207.5640.pdf
  21. 21.
    Zhang, R., Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer (2013).

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringDon Bosco Institute of TechnologyMumbaiIndia

Personalised recommendations