EGFR Role in Cancer: A Potential Therapeutic Target

  • Allyson E. Koyen
  • Geraldine Nabeta
  • Stevin Bienfait
  • Ashley J. Schlafstein
  • David S. Yu
  • Waaqo DaddachaEmail author


Protein kinases play a vital role in the regulation of pathways that control cell growth, proliferation, survival, and differentiation. Epidermal growth factor receptor (EGFR) is a key protein kinase that when dysregulated, disrupts these pathways and, accordingly, is associated with several cancers. Thus, EGFR has been a focus of investigation as a therapeutic target for cancer treatment for the past several decades, with fair success. Despite this success, EGFR-targeted therapies are not universally effective across cancers, and improving the specificity and efficiency of EGFR-targeted therapies is an area of continued investigation. This chapter discusses recent progress made in understanding the role of EGFR in cancer and how the knowledge have been used to develop more precise EGFR-based therapeutic regimens for cancer patients.


EGFR Protein kinases Receptors Therapy Cancer 


  1. 1.
    Fabbro D, Cowan-Jacob SW, Moebitz H (2015) Ten things you should know about protein kinases: IUPHAR review 14. Br J Pharmacol 172(11):2675–2700CrossRefGoogle Scholar
  2. 2.
    Manning G et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934CrossRefGoogle Scholar
  3. 3.
    Miller CJ, Turk BE (2018) Homing in: mechanisms of substrate targeting by protein kinases. Trends Biochem Sci 43:380CrossRefGoogle Scholar
  4. 4.
    Roskoski R Jr (2015) A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res 100:1–23CrossRefGoogle Scholar
  5. 5.
    Oliveras-Ferraros C et al (2008) Growth and molecular interactions of the anti-EGFR antibody cetuximab and the DNA cross-linking agent cisplatin in gefitinib-resistant MDA-MB-468 cells: new prospects in the treatment of triple-negative/basal-like breast cancer. Int J Oncol 33(6):1165–1176PubMedGoogle Scholar
  6. 6.
    Cohen P (2002) Protein kinases – the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315CrossRefGoogle Scholar
  7. 7.
    Fehm T et al (2004) Prognostic significance of serum HER2 and CA 15-3 at the time of diagnosis of metastatic breast cancer. Anticancer Res 24(3b):1987–1992PubMedGoogle Scholar
  8. 8.
    Bocharov EV et al (2016) Alternative packing of EGFR transmembrane domain suggests that protein-lipid interactions underlie signal conduction across membrane. Biochim Biophys Acta 1858(6):1254–1261CrossRefGoogle Scholar
  9. 9.
    Ferguson KM (2008) Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 37:353–373CrossRefGoogle Scholar
  10. 10.
    Kovacs E et al (2015) A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 84:739–764CrossRefGoogle Scholar
  11. 11.
    Okabe T et al (2007) Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res 67(5):2046–2053CrossRefGoogle Scholar
  12. 12.
    Choi SH, Mendrola JM, Lemmon MA (2007) EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer. Oncogene 26(11):1567–1576CrossRefGoogle Scholar
  13. 13.
    Zannetti A et al (2000) Coordinate up-regulation of Sp1 DNA-binding activity and urokinase receptor expression in breast carcinoma. Cancer Res 60(6):1546–1551PubMedGoogle Scholar
  14. 14.
    Dawson JP et al (2005) Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol Cell Biol 25(17):7734–7742CrossRefGoogle Scholar
  15. 15.
    Cadena DL, Chan CL, Gill GN (1994) The intracellular tyrosine kinase domain of the epidermal growth factor receptor undergoes a conformational change upon autophosphorylation. J Biol Chem 269(1):260–265PubMedGoogle Scholar
  16. 16.
    Tan X et al (2016) Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications. Trends Cell Biol 26(5):352–366CrossRefGoogle Scholar
  17. 17.
    Deb TB et al (2001) Epidermal growth factor (EGF) receptor kinase-independent signaling by EGF. J Biol Chem 276(18):15554–15560CrossRefGoogle Scholar
  18. 18.
    Ewald JA et al (2003) Ligand- and kinase activity-independent cell survival mediated by the epidermal growth factor receptor expressed in 32D cells. Exp Cell Res 282(2):121–131CrossRefGoogle Scholar
  19. 19.
    Kancha RK et al (2009) Functional analysis of epidermal growth factor receptor (EGFR) mutations and potential implications for EGFR targeted therapy. Clin Cancer Res 15(2):460–467CrossRefGoogle Scholar
  20. 20.
    Balak MN et al (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12(21):6494–6501CrossRefGoogle Scholar
  21. 21.
    Nishikawa R et al (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 91(16):7727–7731CrossRefGoogle Scholar
  22. 22.
    Nagane M et al (2001) Aberrant receptor signaling in human malignant gliomas: mechanisms and therapeutic implications. Cancer Lett 162(Suppl):S17–S21CrossRefGoogle Scholar
  23. 23.
    Chung I et al (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464(7289):783–787CrossRefGoogle Scholar
  24. 24.
    Shinojima N et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63(20):6962–6970PubMedGoogle Scholar
  25. 25.
    Sainsbury JR et al (1987) Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1(8547):1398–1402PubMedGoogle Scholar
  26. 26.
    Guerin M et al (1989) Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer 43(2):201–208CrossRefGoogle Scholar
  27. 27.
    Roepstorff K et al (2008) Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 129(5):563–578CrossRefGoogle Scholar
  28. 28.
    Liu B et al (2000) Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity. Br J Cancer 82(12):1991–1999CrossRefGoogle Scholar
  29. 29.
    Kimura H et al (2007) Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci 98(8):1275–1280CrossRefGoogle Scholar
  30. 30.
    Pirker R et al (2009) Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373(9674):1525–1531CrossRefGoogle Scholar
  31. 31.
    Lee CK et al (2013) Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst 105(9):595–605CrossRefGoogle Scholar
  32. 32.
    Troiani T et al (2012) Targeting EGFR in pancreatic cancer treatment. Curr Drug Targets 13(6):802–810CrossRefGoogle Scholar
  33. 33.
    Clarke JL et al (2014) A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro-Oncology 16(7):984–990CrossRefGoogle Scholar
  34. 34.
    Kris MG et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16):2149–2158CrossRefGoogle Scholar
  35. 35.
    Chung KY et al (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23(9):1803–1810CrossRefGoogle Scholar
  36. 36.
    Pao W et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):e73CrossRefGoogle Scholar
  37. 37.
    Alqahtani QM et al (2016) QIAGEN Therascreen KRAS RGQ assay, QIAGEN KRAS pyro assay, and Dideoxy sequencing for clinical laboratory analysis of KRAS mutations in tumor specimens. Lab Med 47(1):30–38CrossRefGoogle Scholar
  38. 38.
    Therkildsen C et al (2014) The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol 53(7):852–864CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Allyson E. Koyen
    • 1
  • Geraldine Nabeta
    • 1
  • Stevin Bienfait
    • 1
  • Ashley J. Schlafstein
    • 1
  • David S. Yu
    • 1
  • Waaqo Daddacha
    • 1
    Email author
  1. 1.Department of Radiation Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA

Personalised recommendations